• Title/Summary/Keyword: Water Storage Tank

Search Result 391, Processing Time 0.023 seconds

The Experimental Research for the Collecting Characteristics of the Passive and Active type Domestic Solar Hot Water Systems (자연형 및 설비형 태양열 온수기의 집열특성에 대한 실험적 연구)

  • Lee, Dong-Won;Lee, Kyoung-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.6
    • /
    • pp.12-18
    • /
    • 2013
  • Domestic solar hot water system can be divided into a passive type and an active type. In a passive type the storage tank is horizontally mounted immediately above the solar collectors. No pumping is required as the hot water naturally rises into the storage tank from the collectors through thermo-siphon flow. While, in an active type the storage tank is ground- or floor-mounted and is below the level of the collectors; a circulating pump moves water or heat transfer fluid between the storage tank and the collectors. We installed two types solar hot water systems consisting of the same storage tank and collectors at the same place, and were measured and compared typical operating characteristics under the same external conditions. In particular, the daily system performance was presented through the stirring test after the sunset. The results show that the amount of solar radiation obtained for an active type were less than a passive type on a cloudy day, because the operation of the circulation pump stops frequently took place on that day. However, on a sunny day, depending on the stable operation of the circulation pump, the amount of solar radiation obtained for an active type were increased than a passive type.

A Study on the Heat Exchange Performance for the Liquid Based Solar Thermal Storage (Liquid Based Solar Thermal Storage를 위한 열교환성능(熱交換性能)에 관한 연구(硏究))

  • Kim, Byung-Chul;Jung, Hyun-Chai
    • Solar Energy
    • /
    • v.5 no.2
    • /
    • pp.35-45
    • /
    • 1985
  • A solar hot water storage tank was designed and constructed to examine the heat exchange performances on load side for the solar thermal storage in a single loop solar water heating system. In the tank helically coiled tube was immersed. The hot water was circulated from either top or bottom. The circulation flow rate was varied from 500 ml/min to 20,000 ml/min. The effect of flow rate was observed. The thermal performances according to the flow rate and flow direction were examined. The temperature distributions in the tank and inside of the tubes were plotted along the process of cooling.

  • PDF

A Numerical Study on Hydrodynamic Force Affecting the Vertical Wall of a Portable Water Storage Tank (자유수면의 출렁임이 이동형 소방용수 저장탱크의 수직 벽면에 미치는 동수력에 대한 수치해석)

  • Park, Jinsoo;So, Soohyun;Jang, Taek Soo
    • Fire Science and Engineering
    • /
    • v.31 no.3
    • /
    • pp.49-53
    • /
    • 2017
  • In the present study, the hydrodynamic force acting on the vertical wall of a portable water storage tank is examined. A Dispersion Relation Preserving (DRP) method, proposed by Jang, is applied for simulating lapping waves and their impact on the wall. A meaningful investigation has been observed, which may be applied to the strength design for the portable water storage tank.

Enhancement of Stratification for Solar Water Storage Tank with Spiral Jacket and Coil(Part 1:Verification Experiment) (나선유로에 의한 태양열 축열조 성층화 촉진(제1보 실증실험))

  • Kwon, Jae-Wook;Hong, Hi-Ki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.4
    • /
    • pp.336-342
    • /
    • 2012
  • Large-scale active solar heat systems are generally using heat exchanger between collector and storage tank loops to prevent damage by freezing. It is difficult to maintain stratification in a storage tank in the system owing to greater flow rate enhancing heat transfer. In the previous study, we introduced a spiral-jacketed storage tank and obtained good results to keep system performance of general level without better stratification. We added a scroll-shaped heat exchanger coil on the upper part in the spiral-jacketed storage tank. As a result of the experiment, it was verified that degree of stratification of the new type storage tank is higher than that of the previous one with a possibility of better collector efficiency and solar fraction.

Parameter Optimization of Long and Short Term Runoff Models Using Genetic Algorithm (유전자 알고리즘을 이용한 장·단기 유출모형의 매개변수 최적화)

  • Kim, Sun-Joo;Jee, Yong-Geun;Kim, Phil-Shik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.5
    • /
    • pp.41-52
    • /
    • 2004
  • In this study, parameters of long and short term runoff model were optimized using genetic algorithm as a basic research for integrated water management in a watershed. In case of Korea where drought and flood occurr frequently, the integrated water management is necessary to minimize possible damage of drought and flood. Modified TANK model was optimized as a long term runoff model and storage-function model was optimized as a short term runoff model. Besides distinguished parameters were applied to modified TANK model for supplementing defect that the model estimates less runoff in the storm period. As a result of application, simulated long and short term runoff results showed 7% and 5% improvement compared with before optimized on the average. In case of modified TANK model using distinguished parameters, the simulated runoff after optimized showed more interrelationship than before optimized. Therefore, modified TANK model can be applied for the long term water balance as an integrated water management in a watershed. In case of storage-function model, simulated runoff in the storm period showed high interrelationship with observed one. These optimized models can be applied for the runoff analysis of watershed.

An Effect of Insulated Raft on Longterm Hot Water Storage (Insulated Raft가 장기온수저장에 미치는 영향)

  • Pak, Ee-Tong;Cho, Woon
    • Solar Energy
    • /
    • v.17 no.1
    • /
    • pp.79-91
    • /
    • 1997
  • Thermal energy storage system used a storage tank is a reasonable method to solve energy problem. In thermal energy storage system, energy collected from many types of heat source is stored in a storage tank and then supply to load at the time is in demand. In this study, flow characteristics and storage efficiency were analysed by using a insulated raft in longterm hot water storage system. From the experiment it is found that insulated raft has a important role in longterm hot water storage system and storage efficiency can be obtained to 96% using inletport type and insulated raft together.

  • PDF

The Experimental Study of Ice Thermal Storage for Falling Film Type - Sprint Coil Type - (스파이럴형 냉동코일을 사용한 유하액막식 빙축열조에서 열전달현상에 관한 실험적연구)

  • Lee, C.M.;Kim, D.H.;Cho, N.C.;Kim, I.G.;Park, S.R.;Choi, K.K.;Yim, C.S.
    • Solar Energy
    • /
    • v.19 no.2
    • /
    • pp.1-8
    • /
    • 1999
  • The heat transfer characteristics of ice storage system of falling film type using sprial coil is investigated. The experimental facilities consisted of a water tank, spiral coils located above the tank, an upper water distributor, and a circulating water pump. Water is distributed uniformally over the spiral coils and it forms falling thin films. In the process of freezing, ice is formed on outside of the spiral coils through recirculation of tank water. In the process of melting, ice is melted with return water from the heat load, while the water is chilled again and drops into the tank. The results of falling film type of ice thermal storage system are as follows. The highly efficient shower flowrates for icing is near $3{\ell}/min$. Icing rates on spiral coils is rosed while brine flowrates is increased. Lower brine temperature is not only increased freezing rates but. also become higher total icing weight and overall heat transfer coefficient. Smaller shower flowrates is obtained lower water temperature on outlet for a long time. The amounts of quantity can be detected more accurately by measuring storage tank weight.

  • PDF

A study on Characteristics of Heat Flow of Low Temperature Latent Thermal Storage System (저온 잠열 축열조내의 열유동 특성에 관한 연구)

  • Lee, W.S.;Park, J.W.
    • Solar Energy
    • /
    • v.19 no.4
    • /
    • pp.33-43
    • /
    • 1999
  • The study on ice thermal storage system is to improve total system performance and increase the economical efficiency in actual all-conditioning facilities. To obtain the high charging and discharging efficiencies in ice thermal storage system, the improvement of thermal stratification is essential, therefore the process flow must be piston flow in the cylindrical type. With the relation of the aspect ratio(H/D) in the storage tank, the stratification is formed better as inlet flow rate is smaller. If the inlet and the outlet port are settled at the upside and downside of the storage tank, higher storage rate could be obtainable. In case that the flow directions inside the thermal storage tank are the upward flow in charging and the downward in discharging, thermal stratification is improved because the thermocline thickness is maitained thin and the degree of stratification increases respectively. In the charging process, in case of inlet flow rate the thermal stratification has a tendency to be improved with the lower flow rate and smaller temperature gradient in case of inlet temperature, the large temperature difference between inflowing water and storage water are influenced from the thermal conduction. The effect of the reference temperature difference is seen differently in comparison with the former study for chilled and hot water. In the discharging process, the thermal stratification is improved by the effect of the thermal stratification of the charging process.

  • PDF

An experimental study on thermal storage characteristics in the thermally stratified water storage system (성층 축열 시스템에서의 열 저장 특성에 관한 실험적 연구)

  • Koh, J.Y.;Kim, Y.K.;Lee, C.M.;Yim, C.S.
    • Journal of the Korean Solar Energy Society
    • /
    • v.21 no.4
    • /
    • pp.37-46
    • /
    • 2001
  • This study describes the experimental study that focuses on the effects that distributor shapes and flow rate variations have an influence on the stratification in a rectangular thermal storage tank. Experiments were carried out under the conditions that the flow rates of working fluid are 20, 10 and $5\ell$/min. The storage tank is initially filled with chilled water of $1^{\circ}C$, and is extracted through the bottom at the same rate as the return warm water from load is entered through the distributor at the top of the tank. The thermo-cline forms at the top of the storage tank as the warm water enters the tank from the load through the distributor and the thermo-cline thickness increases with time. Emphasis is given to the effects of mixing at the inlet that increases the thermo-cline decay Flow rate variation and inlet distributor shapes are the important parameters in deciding the performance of a storage system. Stratification degree increases with decreasing in inlet flow rate under $10\ell$/min. Experiments shows that better thermal stratification can be obtain using the distributor to limit momentum mixing at the inlets and outlets. Also, 12% of improvement in the thermal energy usage has been achieved using the modified distributor discharging same flow rate in each lateral ports.

  • PDF

A Study of Performance Characteristics on Hybrid Heat Pump System with Solar Energy as Heat Source (태양열이용 하이브리드 열펌프시스템의 성능특성에 관한 연구)

  • Park, Youn-Cheol;Kim, Ji-Young;Ko, Gwan-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.1
    • /
    • pp.47-54
    • /
    • 2007
  • Interests on renewable energy are increased due to oil price and environmental problems aroused from the fossil energy usage. In this study, performances of a solar assisted hybrid heat pump system are analyzed by experimental method. The developed system could runs at two types of operating mode. When the storage temperature is higher than the set temperature, the stored hot water in storage tank is supplied to the load directly. On the other hand, when the storage temperature lower than the set temperature, the water inside of the storage tank is used as heat source of the heat pump. In this study, the system control temperature for the alternation of the operating mode is set to $40^{\circ}C$ of the storage tank outlet. As results, it is founded that the COP of the developed heat pump system shows between 3.0 and 3.5. It is resonable performance for the heating system with a renewable energy as secondary heat source. The solar collect used in this study could supplies heat to the storage tank at over 400 W/m2 solar intensity. If the irradiation is lower than the 400 W/m2, the circulation pump stored and it could not supply heat to the storage tank. It is found that the difference temperature between the outlet of the storage tank and collector is $3^{\circ}C$. Even though, the extended study should be conducted to get a optimum performance of the developed system with various operating condition and control strategies.