• Title/Summary/Keyword: Water Soluble Carbohydrates

Search Result 88, Processing Time 0.025 seconds

Comparative Analysis on Concentration and Synthetic Amount of Water Soluble and Water Insoluble Carbohydrates with Different Plant Tissues, Growth Stages and Years Old of Panax ginseng C. A. Meyer (인삼의 연생, 생육시기 및 식물체 부위별 수용성과 불수용성 탄수화물 함량과 합성저장량 비교)

  • Park, Seong Yong;Ahn, Bok Ju;Ahn, Hee Jung;Lee, Gyeong A;Heo, Su Jeong;Jeong, Haet Nim;Song, Beom Heon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.23 no.4
    • /
    • pp.292-297
    • /
    • 2015
  • This study was carried out to have the basic and applied informations relating to develop the cultivation methods and to increase the productivity and quality of ginseng. 1 to 6 year old ginsengs of Jakyung cultivar were cultivated and the content and synthetic amount of carbohydrates were investigated with different plant tissues, growth stages, and years old. The concentration of total carbohydrates at six year old ginseng including water soluble and water insoluble carbohydrates was about 18.9%, 42.9%, and 43,6% in leaves, tap roots, and lateral roots, respectively. Water soluble carbohydrate of tap and lateral roots was slightly decreased from August until September, and then increased on November, whereas its water insoluble carbohydrate was increased from August to September and then decreased on November. Comparing with the content of carbohydrates of 1 to 6 year old ginsengs, it was continuously increased from one year old ginseng until five year old ginseng, however it was not increased much in six year old ginseng. The highest content of carbohydrates was at five year-old in all tissues of ginseng. Water soluble and water insoluble carbohydrates were significantly shown different in leaves, stems, tap roots, and lateral root at different growth stages and with different years old. The content of water soluble carbohydrate in the leaves was remarkedly higher compared to that of water insoluble carbohydrate, while in the root the content of water insoluble carbohydrate was clearly higher compared to the water soluble carbohydrate. Comparing with the synthetic amount of carbohydrates, water soluble carbohydrates was higher in the shoot than that in the root, whereas water-insoluble carbohydrates higher in the root than that in the shoot. Carbohydrates which would be utilized in ginseng tissues for short and long-term periods as major energy were appeared differently in between shoot and root, with different growth stages, and years old.

Soy Oligosaccharides and Soluble Non-starch Polysaccharides: A Review of Digestion, Nutritive and Anti-nutritive Effects in Pigs and Poultry

  • Choct, M.;Dersjant-Li, Y.;McLeish, J.;Peisker, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.10
    • /
    • pp.1386-1398
    • /
    • 2010
  • Soybean contains a high concentration of carbohydrates that consist mainly of non-starch polysaccharides (NSP) and oligosaccharides. The NSP can be divided into insoluble NSP (mainly cellulose) and soluble NSP (composed mainly of pectic polymers, which are partially soluble in water). Monogastric animals do not have the enzymes to hydrolyze these carbohydrates, and thus their digestion occurs by means of bacterial fermentation. The fermentation of soybean carbohydrates produces short chain fatty acids that can be used as an energy source by animals. The utilization efficiency of the carbohydrates is related to the chemical structure, the level of inclusion in the diet, species and age of the animal. In poultry, soluble NSP can increase digesta viscosity, reduce the digestibility of nutrients and depress growth performance. In growing pigs, these effects, in particular the effect on gut viscosity, are often not so obvious. However, in weaning piglets, it is reported that soy oligosaccharides and soluble NSP can cause detrimental effects on intestinal health. In monogastrics, consideration must be given to the anti-nutritive effect of the NSP on nutrient digestion and absorption on one hand, as well as the potential benefits or detriments of intestinal fermentation products to the host. This mirrors the needs for i) increasing efficiency of utilization of fibrous materials in monogastrics, and ii) the maintenance and improvement of animal health in antibiotic-free production systems, on the other hand. For example, ethanol/water extraction removes the low molecular weight carbohydrate fractions, such as the oligosaccharides and part of the soluble pectins, leaving behind the insoluble fraction of the NSP, which is devoid of anti-nutritive activities. The resultant product is a high quality soy protein concentrate. This paper presents the composition and chemical structures of carbohydrates present in soybeans and discusses their nutritive and anti-nutritive effects on digestion and absorption of nutrients in pigs and poultry.

The Removal Rate of the Constituents of the Litters in the Aquatic Plant Ecosystems I. Phragmites longivalvis Grasslands in a Delta of the Nakdong River (수생식물 생태계에 있어서 낙엽의 구성성분의 유실률 I. 낙동강 삼각주지역의 갈대 초지)

  • 장남기;오경환
    • Asian Journal of Turfgrass Science
    • /
    • v.9 no.4
    • /
    • pp.331-342
    • /
    • 1995
  • An investigation was performed to reveal the removal rates of organic constituents of the litters in a Phragmithea longivalvis grassland in a Delta of the Nakdong River, The removal rates of the inorganic and organic materials are determined by the mathematical models. The removal rates and time required to decay up to a percentage of each organic constituent were calculated using these new models. The removal rates of cold water soluble fractions, other carbohydrates, hot water soluble fractions, cellulose, crude fat, lignin and crude protein were 2.67, 1.39, 1.25, 1.02, 0.92, 0.49 and 0.47, respectively, The periods required to reach half time to the steady state of the removal and accumulation for cold water soluble fractions, other carbohydrates, hot water soluble fractions, cellulose, crude fat, lignin and crude protein of the litter were 0.26, 0.50, 0.55, 0.68, 0.75, 1.41 and 1.48 years, respectively.

  • PDF

Changes of the Yield and Carbohydrate Content during the Regrowth of the Pastuer plants - Especially Ladno clover and Orchardgrass- (재생기간별 목초의 수량 및 탄수화물함량 변화 - Ladino Clover와 Orchardgrass를 중심으로 -)

  • 전우복
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.1 no.1
    • /
    • pp.10-17
    • /
    • 1978
  • The experiment were carried out to determine the rate of regrowth, the changes of carbohydrates contained in the samples right after cutting, plant part for storage of carbohydtates and top-dressing time of ladino clover and orchardgrass. Plants were grown in the simple growth chamber as well as in the fields. The temperature, light intensity and light period were controlled to be 15-20$^{\circ}$, 4,250 Lux, and 15 hours in the simple growth chamber. The results obtained are as follows ; 1. The period of recovery to initial stands after cutting was about 3 weeks in ladino clover and 4-5 weeks in orchard grass in terms of dry matter and carbohydrates. 2. The content of total water-soluble carbohydrates of plant parts was the hightest in stolon of ladino clover and in sheath of orchardgrass, and the lowest in roots of ladino clover and orchardgrass. 3. Cutting resulted in a temporary decrease of total water-soluble carbohydrates in the shoots. Similar trends were observed when the plants were left intact with top-dressing. 4. The top-dressing applied simultalliousely with the cutting was more effective to stimu1ate regrowth than that applied after cutting, however, both of the simultaneous and after cutting application were still better than application prior to cutting.

  • PDF

Nitrogen Effects on Growth Responses and Carbohydrate Concentrations in Source and Sink Tissues of Two Rice Cultivars

  • Song, Beom-Heon;Lee, Chul-Won;Ryu, Shi-Hwan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.45 no.5
    • /
    • pp.288-293
    • /
    • 2000
  • Two rice cultivars (Oryza sativa L.), Hwa-seongbyeo of Japonica type and Taebackbyeo of Indica/Japonica type, were cultivated with hydroponic culture to examine nitrogen effects on the growth responses, contents and utilizations of carbohydrates, and the ripening velocity of grains with three different N levels. Plant height and tiller number were clearly increased to 80 ppm N level compared to 40 ppm N level and then they were slightly decreased in N level of 120 ppm. Higher dry weights were appeared with 80 ppm N level than did with other N levels, showing statistically differences in both cultivars and N levels, while dry weight of roots was heavier with decreasing the N levels. Therefore, T/R ratios were not significantly different among N levels, although there was statistically differences between rice cultivars. After the flowering stage, higher water-soluble carbohydrate (WSC) and water-insoluble carbohydrate (WISC) were contained in stem compared with other parts, showing that WISC of sheath and stem, unlike WSC, was significantly different among N levels. Starch of grain, WISC, was remarkedly increased from 3.0% at just after the flowering to 52.0% and 75.0% at 15 and 30 day after the flowering, respectively, showing that lower N application had faster accumulation of starch in rice grains. N would affect the contents of carbohydrates of each tissue, and starch accumulation in rice grains.

  • PDF

Blood Glucose-Lowering Effects of Mori Folium (상엽의 혈당강하 활성)

  • 이주선;최명현;정성현
    • YAKHAK HOEJI
    • /
    • v.39 no.4
    • /
    • pp.367-372
    • /
    • 1995
  • Mori Folium(MF) methanol extract and its water soluble fraction showed significant blood glucose lowering effects alloxan-induced hyperglycemic mice. Their hypoglycemic activities seemed to nothing to do with the stimulation of insulin release or insulin-like action, according to our experiments. On the other hand, MF prevents the hyperglycemic responses from an oral load of starch and glucose in vivo. Since complex carbohydrates present in a diet must be degraded to monosaccharides by $\alpha$-glucohydrolase before being absorbed in the gastrointestinal tract, it is thought that blood glucose lowering effects of MF may be related to the inhibition of $\alpha$-glucohydrolase catalyzed enzymatic reaction. In addition, experiments that examined an effect of MF water soluble fraction on gastrointestinal movement showed no significant GI movement inhibitory effect. In conclusion, MF water soluble fraction may possess active component which is a potential candidate as an orally active agent for the treatment of diabetes mellitus.

  • PDF

Physiological Responses to Mineral-Excessive Conditions: Mineral Uptake and Carbohydrate Partitioning in Tomato Plants

  • Sung, Jwakyung;Lee, Suyeon;Lee, Yejin;Kang, Seongsoo;Ha, Sangkeun;Sonn, Yeonkyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.6
    • /
    • pp.563-570
    • /
    • 2014
  • The shortage or surplus of minerals directly affects overall physiological metabolism of plants; especially, it strongly influences carbohydrate metabolism as a primary response. We have studied mineral uptake, synthesis and partitioning of soluble carbohydrates, and the relationship between them in N, P or K-excessive tomato plants, and examined the interaction between soluble carbohydrates and mineral elements. Four-weeks-old tomato plants were grown in a hydroponic growth container adjusted with excessive N ($20.0mmol\;L^{-1}$ $Ca(NO_3)2{\cdot}4H_2O$ and $20.0mmol\;L^{-1}$ $KNO_3$), P ($2.0mmol\;L^{-1}$ $KH_2PO_4$), and K ($20.0mmol\;L^{-1}$ $KNO_3$), respectively, for 30 days. Shoot growth rates were significantly influenced by excessive N or K, but not by excessive P. The concentrations of water soluble N (nitrate and ammonium), P and K were clearly different with each tissue of tomato plants as well as the mineral conditions. The NPK accumulation in all treatments was as follows; fully expanded leaves (48%) > stem (19%) = roots (16%) = petioles (15%) > emerging leaves (1). K-excessive condition extremely contributed to a remarkable increase in the ratio, which ranged from 2.79 to 10.34, and particularly potassium was dominantly accumulated in petioles, stem and roots. Fresh weight-based soluble sugar concentration was the greatest in NPK-sufficient condition ($154.8mg\;g^{-1}$) and followed by K-excessive (141.6), N-excessive (129.2) and P-excessive (127.7); whereas starch was the highest in K-excessive ($167.0mg\;g^{-1}$) and followed by P-excessive (146.1), NPK-sufficient (138.2) and N-excessive (109.7). Soluble sugar showed positive correlation with dry weight-based total N content (p<0.01) whereas was negatively correlated with soluble P (p<0.01) and dry weight-based total P (p<0.01). On the other hand, starch production was negatively influenced by total N (p<0.001), but, it showed positive relation with total K concentration (p<0.05). This study shows that uptake pattern of NPK and production and partitioning of soluble carbohydrate were substantially different from each mineral, and the relationship between water soluble- and dry weight-based-mineral was positive.

Solute patterns of four halophytic plant species at Suncheon Bay in Korea

  • Choi, Sung-Chul;Choi, Deok-Gyun;Hwang, Jeong-Sook;Kim, Jong-Guk;Choo, Yeon-Sik
    • Journal of Ecology and Environment
    • /
    • v.37 no.3
    • /
    • pp.131-137
    • /
    • 2014
  • To investigate the solute pattern of salt marsh plants in Suncheon Bay in Korea, plants and soil samples were collected at three sites from July to September 2011. The soil pH around the investigated species was weakly alkaline, 6.9-8.1. The total ion and Cl- content of site 1 gradually increased, while those of site 2 and site 3 were lowest in August and highest in September. The exchangeable $Ca^{2+}$, $Mg^{2+}$ and $K^+$ in the soil were relatively constant during the study period, but the soil exchangeable $Na^+$ content was variable. Carex scabrifolia and Phragmites communis had constant leaf water content and very high concentrations of soluble carbohydrates during the study period. However, Suaeda malacosperma and S. japonica had high leaf water content and constant very low soluble carbohydrate concentrations. Carex scabrifolia accumulated similar amounts of $Na^+$ and $K^+$ ions in its leaves. Phragmites communis contained a high concentration of $K^+$ ions. Suada japonica and S. malacosperma had more $Na^+$ and $Cl^-$ ions than $K^+$ ions in their leaves. Suaeda japonica had higher levels of glycine betaine in its leaves under saline conditions than C. scabrifolia and P. communis. Consequently, the physiological characteristics of salt marsh chenopodiaceous plants (S. japonica and S. malacosperma) were the high storage capacity for inorganic ions (especially alkali cations and chloride) and accumulation of glycine betaine, but monocotyledonous plant species (C. scabrifolia and P. communis) showed high $K^+$concentrations, efficient regulation of ionic uptake, and accumulation of soluble carbohydrates. These characteristics might enable salt marsh plants to grow in saline habitats.

Studies on the Physiological Chemistry of Seed Development in Ginseng Seed (인삼식물의 종자발육 과정에 있어서의 생리화학적 연구)

  • Hee-Chun Yang
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.17
    • /
    • pp.115-133
    • /
    • 1974
  • This study was done on the metabolism of chemical components during the seed development of ginseng. The changes of the chemical components were inspected in the following periods: from the early stage of flower organ formation to flowering time, from the early stage of fruiting to maturity, during the moisture stratification before sowing. From flower bud forming stage to meiosis stage, the changes in the fresh weight, dry weight, contents of carbohydrates, and contents of nitrogen compounds were slight while the content of TCA soluble phosphorus and especially the content of organic phosphorus increased markedly. From meiosis stage to microspore stage the fresh and dry weights increase greatly. Also, the total nitrogen content increases in this period. Insolub]e nitrogen was 62-70% of the total nitrogen content; the increase of insoluble nitrogen seems to have resulted form the synthesis of protein. The content of soluble sugar (reducing and non-reducing sugar) increases greatly but there was no observable increase in starch content. In this same period, TCA soluble phosphorus reached the maximum level of 85.4% of the total phosphorus. TCA insoluble phosphorus remained at the minimum content level of 14.6%. After the pollen maturation stage and during the flowering period the dry weight increased markedly and insolub]e nitrogen also increased to the level of 67% of the total nitrogen content. Also in this stage, the organic phosphorus content decreased and was found in lesser amounts than inorganic phosphorus. A rapid increase in the starch content was also observed at this stage. In the first three weeks after fruiting the ginseng fruit grows rapidly. Ninety percent of the fresh weight of ripened ginseng seed is obtained in this period. Also, total nitrogen content increased by seven times. As the fruits ripened, insoluble nitrogen increased from 65% of the total nitrogen to 80% while soluble nitrogen decreased from 35% to 20%. By the beginning of the red-ripening period, the total phosphoric acid content increased by eight times and was at its peak. In this same period, TCA soluble phosphorus was 90% of total phosphorus content and organic phosphorus had increased by 29 times. Lipid-phosphorus, nucleic acid-phosphorus and protein-phosphorus also increased during this stage. The rate of increase in carbohydrates was similar to the rate of increase in fresh weight and it was observed at its highest point three weeks after fruiting. Soluble sugar content was also highest at this time; it begins to decrease after the first three weeks. At the red-ripening stage, soluble sugar content increased again slightly, but never reached its previous level. The level of crude starch increased gradually reaching its height, 2.36% of total dry weight, a week before red-ripening, but compared with the content level of other soluble sugars crude starch content was always low. When the seeds ripened completely, more than 80% of the soluble sugar was non-reducing sugar, indicating that sucrose is the main reserve material of carbohydrates in ginseng seeds. Since endosperm of the ripened ginseng seeds contain more than 60% lipids, lipids can be said to be the most abundant reserve material in ginseng seeds; they are more abundant than carbohydrates, protein, or any other component. During the moisture stratification, ginseng seeds absorb quantities of water. Lipids, protein and starch stored in the seeds become soluble by hydrolysis and the contents of sugar, inorganic phosphorus, phospho-lipid, nucleic acid-phosphorus, protein phosphorus, and soluble nitrogen increase. By sowing time, the middle of November, embryo of the seeds grows to 4.2-4.7mm and the water content of the seeds amounts to 50-60% of the total seed weight. Also, by this time, much budding material has been accumulated. On the other hand, dry stored ginseng seeds undergo some changes. The water content of the seeds decreases to 5% and there is an observable change in the carbohydraes but the content of lipid and nitrogen compounds did not change as much as carbohydrates.

  • PDF

The Litter Accumulation, Decay and Turnover Models and their Validation (낙엽의 축적, 분해 및 무기화에 관한 모델정립과 그 적용)

  • Chang, Nam-Kee;Sung-Kyu Lee;Bok-Seon Lee;Heu Baik Kim
    • The Korean Journal of Ecology
    • /
    • v.10 no.3
    • /
    • pp.139-149
    • /
    • 1987
  • Mathematical models of the litter accumulation, decay and turnover in the grassland and forest ecosystems of equilibrium state of the annual litter production were established to analyse the decay rates of organic and inorganic constituents of the litter. Those models were validated by an application to a Phragmites longivalvis grassland in a delta of the River Nakdong. The decay constants of cold-water-soluble fractions, other carbohydrates, hot-water-soluble fractions, cellulose, crude fat, lignin and crude protein in the litter were 0.730, 0.583, 0.555, 0.505, 0.479, 0.331 and 0.310 respectively. The amount of mineral nutrients such as N. P. K. Ca and Mg returned annually to the soil were estimated to 7.09, 1.34, 2.36, 4.37 and 0.79g/m2 respectively.

  • PDF