• Title/Summary/Keyword: Water Shock

Search Result 360, Processing Time 0.044 seconds

Effect of Laser Shock Peening Simulation Parameters on Residual Stress of Inconel Alloy 600 Steel (LSP 시뮬레이션 변수가 Inconel 600 합금의 잔류응력에 미치는 영향)

  • Kim, Ju-Hee;Kim, Yun-Jae;Kim, Joung-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.1
    • /
    • pp.43-50
    • /
    • 2012
  • The effects of parameters related to the finite element simulation of the laser shock peening(LSP) process on the residual stresses of Inconel alloy 600 steel are discussed. In particular, we focus on the maximum pressure, pressure pulse duration, laser spot size, and number of shots. It is found that certain ranges of the maximum pressure and pulse duration can produce the maximum compressive residual stresses near the surface, and thus proper choices of these parameters are important. The residual stresses are not affected by the laser spot size, provided it is larger than a certain size. The magnitudes of the compressive residual stresses and the plastically affected depths are found to increase with an increasing number of shots, but this effect is less pronounced for more shots.

Validation of underwater explosion response analysis for airbag inflator using a fluid-structure interaction algorithm

  • Lee, Sang-Gab;Lee, Jae-Seok;Chung, Hyun;Na, Yangsup;Park, Kyung-Hoon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.988-995
    • /
    • 2020
  • Air gun shock systems are commonly used as alternative explosion energy sources for underwater explosion (UNDEX) shock tests owing to their low cost and environmental impact. The airbag inflator of automotive airbag systems is also very useful to generate extremely rapid underwater gas release in labscale tests. To overcome the restrictions on the very small computational time step owing to the very fine fluid mesh around the nozzle hole in the explicit integration algorithm, and also the absence of a commercial solver and software for gas UNDEX of airbag inflator, an idealized airbag inflator and fluid mesh modeling technique was developed using nozzle holes of relatively large size and several small TNT charges instead of gas inside the airbag inflator. The objective of this study is to validate the results of an UNDEX response analysis of one and two idealized airbag inflators by comparison with the results of shock tests in a small water tank. This comparison was performed using the multi-material Arbitrary Lagrangian-Eulerian formulation and fluid-structure interaction algorithm. The number, size, vertical distance from the nozzle outlet, detonation velocity, and lighting times of small TNT charges were determined. Through mesh size convergence tests, the UNDEX response analysis and idealized airbag inflator modeling were validated.

Long Term Evaluation of UF Membrane process using River-bed Water (복류수를 이용한 한외여과공정의 장기운전 평가)

  • Kim, Chung H.;Lim, Jae L.;Kang, Suk H.;Kim, Su H.
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.4
    • /
    • pp.429-436
    • /
    • 2008
  • Membrane system has been increasingly considered as a safe and cost-effective water treatment process especially in case of small scale water works. This research is a basis of membrane application in water works through a long period test with obtaining operation skills and evaluation of water quality and cost competitiveness. For the research, the UF membrane system was installed in small water treatment plant that uses river-bed water as raw water. The system was consisted of 2 stage membrane and operated in constant flow mode (Flux: 1.5, 1.0, 0.9, 0.6). In each different flux condition, TMP trends were showed better results at lower flux condition. And through the high flux condition test, it is certified that membrane system could deal with breakdown of one stage. Water quality of permeate was satisfied the water quality standards especially turbidity. To know what mainly causes fouling on membrane, the test by membrane with several cleaning agents and EDX analysis have done in lab. Through the tests, ferrous concentration in raw water, backwashing water and membrane surface etc. was high and it causes fouling inside and outside of membrane. So acid cleaning using organic acid such as oxalic acid is necessary in Chemical in Place (CIP). At the economical aspect the electrical cost of membrane system is higher than that of slow sand filtration but labor cost can be reduced by automation. However, the use of labor should be determined considering effectiveness and stability of operation. Because during the operation, there are several breakdown such as electrical shock by lightning, water drop in summer, etc.

Development of a Plasmid Vector for Overproduction of $\beta$-Galactosidase in Escherichia coli by Using Genetic Components of groEx from Symbiotic Bacteria in Amoeba proteus

  • Lee, Jung-Eun;Ahn, Eun-Young;Ahn, Tae-In
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.5
    • /
    • pp.509-516
    • /
    • 1998
  • A plasmid vector, pXGPRMATG-lac-Tgx, was developed for overproduction of $\beta$-galactosidase in Escherichia coli using the genetic components of groEx, a heat-shock gene cloned from symbiotic X-bacteria in Amoeba proteus. The vector is composed of intragenic promoters P3 and P4 of groEx, the structural gene of lac operon, transcription tenninator signals of lac and groEx, and ColEl and amp'of pBluescript SKII. The optimized host, E. coli DH5$\alpha$, transfonned with the vector constitutively produced 117,310-171,961 Miller units of $\beta$-galactosidase per mg protein in crude extract. The amount of enzyme in crude extract was 53% of total water-soluble proteins. About 43% of the enzyme could be purified to a specific activity of 322,249 Miller units/mg protein after two-fold purification, using two cycles of precipitation with ammonium sulfate and one step of gel filtration. Thus, the expression system developed in this study presents a low-cost and simple method for purifying overproduced $\beta$-galactosidase in E. coli.

  • PDF

NIR DIODE ARRAY SPECTROMETERS ON AGRICULTURAL HARVEST MACHINES OVERVIEW AND OUTLOOK

  • Rode, Michael
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1172-1172
    • /
    • 2001
  • Compact Near Infrared Diode Array Spectrometers offer new possibilities for on line quality assurance in the agricultural sector. Due to their speed and complete robustness towards temperature fluctuations and mechanical shock Diode Array Spectrometers are suitable for the use on Agricultural Harvest Machines. The growing consumer consciousness of food quality in combination with falling manufacturing prices demands procedures for an effective quality control system. The various conventional types of NIR instruments which have so far been used in laboratories are unsuitable for mobile applications under the rough conditions of field cropping not only because of their slow speed of measurement but also because of their shock sensitive filter wheels and monochromators necessary for fractionating polychromatic light. Another advantage of the on line use is the reduction of the sampling error because of the continuously measurement of the whole product. Considering the large economic importance of the dry matter content on agricultural products it is of particular advantage that water belongs to those constituents which are most easily assessed in the near infrared. While other constituents of economic importance such as starch, oil and protein in grains and seeds have a much lesser effect on NIR signals, their contents can nonetheless be assessed with high analytical precision on freshly harvested grains and seeds. In the last years several applications for on line quality assessment on harvesting machines were developed and tested. The talk will give an overview and outlook on existing and future possibilities of this new field of NIR applications.

  • PDF

A Study on Risk of Electric Shock from Damaged Grid Connection Cable in Floating Photovoltaic System (수상 태양광 발전설비 계통 연계 케이블 손상시 감전 위험에 관한 연구)

  • Song, Young-Sang;Jeon, Taehyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.9
    • /
    • pp.14-19
    • /
    • 2014
  • Recently, many renewable energy generating businesses are ongoing progress due to the introduction of the RPS(Renewable Portfolio Standards) as well as the needs of environmentally friendly energy resources. Researches on photovoltaic system are actively being processed since the photovoltaic system is relatively easy to install and becomes commercialized in many domestic application areas. Furthermore, the floating photovoltaic system is likely to be installed more actively since the conventional photovoltaic system requires relatively large areas of land. Also, the floating photovoltaic system is more efficient than photovoltaic system installed in land due to the operation in lower temperature. However, safety problems such as electric shock could arise since the cable should be installed in the water. In this paper, the leakage current and the voltage rising are measured and analyzed for the case when the cables are damaged connecting the floating photovoltaic system to the grid.

THE EFFECTS OF MACH NUMBER AND THICKNESS RATIO OF AIRFOIL ON TRANSONIC FLOW OF MOIST AIR AROUND A THIN AIRFOIL WITH LATENT HEAT TRANSFER (잠열 전달이 일어나는 얇은 익형주위의 천음속 습공기 유동에서의 마하수와 익형 두께비의 영향)

  • Lee, J.C.
    • Journal of computational fluids engineering
    • /
    • v.17 no.4
    • /
    • pp.93-102
    • /
    • 2012
  • Once the condensation of water vapor in moist air around a thin airfoil occurs, liquid droplets nucleate. The condensation process releases heat to the surrounding gaseous components of moist air and significantly affects their thermodynamic and flow properties. As a results, variations in the aerodynamic performance of airfoils can be found. In the present work, the effects of upstream Mach number and thickness ratio of airfoil on the transonic flow of moist air around a thin airfoil are investigated by numerical analysis. The results shows that a significant condensation occurs as the upstream Mach number is increased at the fixed thickness ratio of airfoil($\epsilon$=0.12) and as the thickness ratio of airfoil is increased at the fixed upstream Mach number($M_{\infty}$=0.80). The condensate mass fraction is also increased and dispersed widely around an airfoil as the upstream Mach number and thickness ratio of airfoil are increased. The position of shock wave for moist air flow move toward the leading edge of airfoil when it is compared with the position of shock wave for dry air.

Numerical Simulation of Steam Jet Vacuum System in Multi-effect Desalination Plant (다중효용 담수 설비의 증기이젝터 진공장치에 관한 수치해석)

  • Ko, Sang-Cheol;Kim, Yong-Sun;Choi, Du-Youl;Kim, Pil-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.238-242
    • /
    • 2015
  • A steam jet vacuum system that will be implemented in a multi-effect desalination plant is numerically investigated. The objective of this study is to numerically investigate the performance characteristic of the steam jet vacuum system for the sea water distillation process. The effects of design parameter such as nozzle size and converging duct angle are discussed in order to get a better understanding of flow characteristics inside the steam ejector and subsequently pave the way for more optimum designs. The simulation results have been in good agreement with experimental data and have well reproduced the shock train phenomena of the throat region.

Pressure Wave Propagation Phenomena in Water Containing Uniformly Distributed Gas Bubbles (소량의 기포를 함유한 이상유체 내에서의 압력파의 전파현상)

  • Kim, D.-H.
    • The Journal of the Acoustical Society of Korea
    • /
    • v.8 no.1
    • /
    • pp.23-30
    • /
    • 1989
  • Propagation phenomena of nonlinear pressure waves in a bubbly mixture are studied. The governing equations for a bubbly mixture are derived heuristically and energy equation is incorporated with other governing equations to take thermal effects into consideration inside the bubble. This non-isothermal condition of the bubble inside is especially important when high amplitude pressure waves are treated. Keller's equation is adapted for the bubble dynamics as practical problem. Some numerical simulations are carried out for the shock tube problem using a computer program based on the above model. A comparison with experimental results of Noordzij and van Wijngaarden shows that the structure of the wave in the shock tube experiment seems to be much more significantly affected 요 the complex heat transfer phenomena inside the bubbles than by the relative translational motion between bubbles and surrounding liquid.

  • PDF

Thermal and Mechanical Properties of Electro-Slag Cast Steel for Hot Working Tools

  • Moon Young Hoon;Kang Boo Hyun;Van Tyne Chester J.
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.496-504
    • /
    • 2005
  • The thermal and mechanical properties of an electro-slag cast steel of a similar chemical composition with an AISI-6F2 steel are investigated and compared with a forged AISI-6F2 steel. AISI-6F2 is a hot-working tool steel. Electro-slag casting (ESC) is a method of producing ingots in a water-cooled metal mold by the heat generated in an electrically conductive slag when current passes through a consumable electrode. The ESC method provides the possibility of producing material for the high quality hot-working tools and ingots directly into a desirable shape. In the present study, the thermal and mechanical properties of yield strength, tensile strength, hardness, impact toughness, wear resistance, thermal fatigue resistance, and thermal shock resistance for electro-slag cast and forged steel are experimentally measured for both annealed and quenched and tempered heat treatment conditions. It has been found that the electro-slag cast steel has comparable thermal and mechanical properties to the forged steel.