• Title/Summary/Keyword: Water Saving Irrigation

Search Result 70, Processing Time 0.029 seconds

Water-Saving Culture under Ridge Direct Seeding on Dry Paddy of Rice (벼 휴입건답직파 재배에서 합리적인 절수 관개방법)

  • Choi, Weon-Young;Park, Hong-Kyu;Kim, Sang-Su;Yang, Won-Ha;Shin, Hyun-Tak;Cho, Soo-Yeon;Choi, Sun-Young
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.6
    • /
    • pp.706-711
    • /
    • 1997
  • Low supply of water is generally the most serious factor limiting rice production. The experiment was conducted to identify the reasonable method for minimum irrigation under ridge direct seeding on dry paddy, at National Honam Agricultural Experiment Station, RDA in 1996. The results showed that the reduction ratio of irrigation water was high in order of furrow irrigation at 15-day>furrow irrigation at 10-day>flooding irrigation at 10-day>, and furrow irrigation at 5-day intervals. However, milled rice yield was high in the furrow irrigation at 5-day intervals and in flooding irrigation at 10-day intervals due to high ripened grain as compared with other treatments indicating two treatments were the most reasonable irrigation methods in terms of saving the labor cost and water supply as well as the admittable yield performance.

  • PDF

Elect on Saving Water of Underground Trickle Irrigation (지중관수 방법에 의한 용수절감 효과)

  • Kim J. H.;Kim C. S.;Kim T. W.;Hong J. H.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.2 s.109
    • /
    • pp.102-109
    • /
    • 2005
  • Water consumption at the farm is up to 48 percent of water resource of South Korea while manufacturing industry's is only $9.6\%$. The area of arable land is 2,077,067 ha and 27 percent of it is used for growing fruits and vegetables using furrow or surface irrigation at the greenhouse. Surface irrigation at the greenhouse for fruits and vegetables has problems such as over watering and insufficient supply of water to the fine roots of the plant. However, the research on the new method of irrigation to save water usage is few. The characteristics of soil wetting was measured for using surface irrigation and underground trickle irrigation method where water was supplied at 10, 15, 20, and 25 cm beneath the surface ground. Followings are summary of this study. 1. The efficiency of underground trickle irrigation was expected to be as high as twice of surface irrigation such as drip watering or sprinkling. 2. This improvement could be possible by using less than $50\%$ of irrigation water than surface irrigation to supply similar amount of water near fine roots. 3. Surface irrigation causes soil compaction as deep as 20 cm below the surface ground which reduces soil porosity and root respiration ending up developing less fine roots. 4. Underground trickle irrigation can prevent overdamping in the greenhouse since it does not over wet the surface soil. At winter, the amount of agricultural chemical usage could be reduced since this irrigation method does not develop blight or crop disease from condensation of water vapor.

Water Saving Irrigation Manual of Autumn Chinese Cabbage (가을배추의 물 절약형 관개기준 설정)

  • Jung, Pil-Kyun;Eom, Ki-Cheol;Son, Yeon-Ku;Koh, Mun-Hwan;Kim, Sang-Hee;Park, So-Hyun;Yoo, Sung-Yung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.679-687
    • /
    • 2011
  • The water management of crop is different according to the area as well as climate condition and growth stage, however it is the most important and difficult problems for the farmers. The optimum irrigation manual those irrigation interval and amount of irrigation as water saving, are developed based on the lysimeter experiments carried out by the RDA for 11 years about PET (Potential Evapo-Transpiration), crop coefficient (Kc). The average PET (Potential Evapo-Transpiration) during 30 years of 45 regions for the autumn chinese cabbage cultivation was a $2.17mm\;day^{-1}$.

Smart irrigation technique for agricultural water efficiency against climate change (기후변화 대응 물 효율성 증대를 위한 스마트 관개기술 연구)

  • Kim, Minyoung;Jeon, Jonggil;Kim, Youngjin;Choi, Yonghun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.198-198
    • /
    • 2017
  • Climate change causes unpredictable and erratic climatic patterns which affects crop production in agriculture and threatens public health. To cope with the challenges of climate change, sustainable and sound growth environment for crop production should be secured. Recent attention has been given to the development of smart irrigation system using sensors and wireless network as a solution to achieve water conservation as well as improvement in crop yield and quality with less water and labor. This study developed the smart irrigation technique for farmlands by monitoring the soil moisture contents and real-time climate condition for decision-making support. Central to this design is micro-controller which monitors the farm condition and controls the distribution of water on the farm. In addition, a series of laboratory studies were conducted to determine the optimal irrigation pattern, one time versus plug time. This smart technique allows farmers to reduce water use, improve the efficiency of irrigation systems, produce more yields and better quality of crops, reduce fertilizer and pesticide application, improve crop uniformity, and prevent soil erosion which eventually reduce the nonpoint source pollution discharge into aquatic-environment.

  • PDF

Regulated Deficit Irrigation and Its Several Problemsin Practical Use (부족조절관개와 실용상의 문제점)

  • Cai, Huanjie;Hang, Shazhong
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.30-40
    • /
    • 1999
  • Regulated Deficit Irrigation (RDI) is one of the most important measures for the watcr-saving and high yield of crops. RDI is based on the crop and water relations. The theories of RDI were analyzed using the experiment data in Sha.anxi. and Gansu Province. There are several problems of RDI in practical use, which include: the uncertainty of cropwwater relations, the proper growth stages and water deficit d$\xi$gree ofRDI applied, and the requirements ofRDI to irrigation system and irrigation tecbniques.

  • PDF

Cement Prefabricated Piped Making and Its Application on Agriculture Irrigation

  • Meng, Qingchang;Sun, Qingyi;Dang, Yongliang
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.212-218
    • /
    • 1996
  • The concrete pipe used to distribute irrigation water to the right place now available is commonly made up of cement , sand, earth, pebble, etc. These materials with right ratio and right amount of water were mixed and squeezed through the pipe-making machine called vertical squeezed pipe-making machine, and then a cement prefabricated pipe is produced . This kinds of pipe has been expanding by leaps and bounds. Being little cement contents and low cost, the length of pipe is 1.0m or so with weight of 50kg, which is easy to be made and to be transported. The demolish pressure of it is 0.2 MPa or so, which meets the needs of agriculture irrigation . The buried pipe irrigation system, has been popularized in Jining Municipal , Shandong Province. By the year of 1995 , the irrigation area under pipe conveyancesystem usign this type of pipe has reached 74000 hectares. By calculation, about 27.7million ㎥ water, 2.88 million kWh power , 0.167 million man power and 1528 hectares cu tivated land will be saved one year, adding value of agriculture output increased by 10 million kg. The total economic benefits amount to 0.92 million US$ a year. The paper presents the pipe making course and its application on a large scale area.

  • PDF

Effects of Water Management Methods on CH4 and N2O Emission From Rice Paddy Field

  • Kim, Gun-Yeob;Lee, Jong-Sik;Jeong, Hyun-Cheol;Choi, Eun-Jung;Sonn, Yeon-Kyu;Kim, Pil-Joo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.599-605
    • /
    • 2013
  • The effects of water-saving irrigation on the emissions of greenhouse gases and the prokaryotic communities in rice paddy soils were investigated through a field experiment. In the Water-Saving (WS) irrigation, the water layer was kept at 2~3 cm while it was kept at 6 cm in the Continuousiy Flooding (CF) irrigation. A plot was treated with Intermittently Drainage (ID) that is drained as fine cracks on the floor were seen after transplanting. GHGs emission amounts from WS plots were reduced by 78.1% compared to that from CF plot and by 70.7% compared to that from ID plot, meaning that WS could help contribute to mitigation of the greenhouse gas accumulation in the atmosphere.

A Study on the Participatory Irrigation Management under Public Irrigation Management System (공적(公的)관리에서의 참여형 관개관리(PIM) 모델)

  • Lee, Sung-Hee;Kim, Tai-Cheol
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.3
    • /
    • pp.13-17
    • /
    • 2011
  • There was a transition from participatory irrigation management (PIM) to public irrigation management (PubIM) in Korea when Korea Rural corporation and Community (KRC) merged with Farm Land Improvement Associations (FLIAs), which had managed 60 % of irrigation areas. While making a number of achievements, some problems occurred in the public irrigation management, such as lack of farmers' participation, increased amount of water usage, and elevating operating costs. Accordingly, this paper suggested ways to increase efficiency in water usage and reduce operating costs under the public management through the motive power of farmers participation. First, WUGs replaced the discarded water management committee should be reorganized to revive the concept of PIM in the form of autonomously reinforced one and the roles and functions of WUGs and the board of representatives should be strengthened. The member of new type of WUGs should participate in the national and regional water management committees as a stakeholder of irrigation water user. And also new type of WUGs initiates not only the management of irrigation water but also the management of irrigation water quality and non-point source pollution in the watersheds. Those additional activities of WUGs should be properly compensated. Second, subsidies (direct payments) should be provided to faithful farmers as an incentive for their labor supply. Third, water fees could be charged to large scale agriculture companies. Fourth, professional managers could be hired, management targets would be adjusted, and incentives should be offered. These efforts are expected to improve the irrigation management by encouraging farmers' participation under public system.

Reasonable Seeding Rate for Ridge Direct Seeding on Dry Paddy of Rice as an Irrigation Water-Saving Cultural System (벼 휴립건답직파 절수재배에 알맞은 파종량)

  • Choi Weon-Young;Park Hong-Kyu;Kim Sang-Su;Shin Hyun-Tak;Choi Sun-Young
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.2 no.4
    • /
    • pp.143-147
    • /
    • 2000
  • This study was conducted to investigate suitable seeding rate under irrigation water-saving rice culture in ridge direct seeding on dry paddy during 1997~1998. Dongjinbyeo was seeded from 60 kg/ha to 120 kg/ha on silty loam condition. The number of irrigation from 3-leaf stage to complete drainage were 7.5 times and total amount of irrigation was 258.75 mm. The number of seedling stand rose with the increase of seeding rate, whereas the rate of seedling stand was decreased with the increase of it. Soil moisture tension was -2kPa at one day after stopped irrigation and lowered to -30kPa at five days after stopped irrigation. Leaf area index and shoot dry weight were increased with rising of seeding rate. Lodging index was increased with the rising of seeding rate, but lodging was not showed in field. Heading date, percent ripened grain and 1,000 grain weight had no difference with seeding rate, and number of spikelets per m$^2$ were highest at the rate of 100 kg/ha. Rice yield was increased by 9% at the seeding rate of 100 kg/ha and 4% at the rate of 80 kg/ha and 120 kg/ha compared with 60 kg/ha. Therefore, it was considered that appropriate seeding rate was 100 kg/ha under water-saving culture in ridge direct seeding on dry paddy.

  • PDF

A study on the irrigation water pumping system of multipurpose dams by the large water ejector (대형 수이젝터를 이용한 다목적댐 관개용수 펌핑시스템에 관한 연구)

  • 윤석훈;오철;손근홍;김철환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.1
    • /
    • pp.73-80
    • /
    • 1994
  • The water ejector is a low pressure high flow rate volumetric pump. It utilize the energy of a low mass flow, high velocity stream to induce a large mass flow, low velocity stream. In addition, it has a very good resistances to cavitation compared to the other type of pumps, and the maintenance cost is practically nil. There has been enormous energy loss to supply the upper part water of dam which has large potential energy as mere irrigation water in domestic multipurpose dam. The new type of energy saving system which developed through the present study can economizes over 950,000 kWh per year by mixing the upper part water of dam with the waste water by the large water ejector. This paper estimates the economical efficiency of the new type of irrigation water pumping system, and further more, represents the change of performance characteristics of large water ejector, which was adapted to this system, according to the fluctuation of upper water level that seasonally changes.

  • PDF