• Title/Summary/Keyword: Water Region

Search Result 3,268, Processing Time 0.034 seconds

A Study on CBR Characteristics of National Highway in Yeongnam Region (영남지역 국도에 사용된 흙의 CBR 특성에 관한 연구)

  • Park, Yeong-Mog;Lee, Go-Hyeun;Kim, Nak-Seok;Cho, Gyu-Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.3
    • /
    • pp.535-543
    • /
    • 2016
  • This study has been carried out to evaluate the CBR characteristics and the correlations among every soil properties of National road in Yeongnam region. Total of 480 soil samples were collected from 41 administrative districts for more than 30 years. Their physical and mechanical properties such as natural water content, the Atterberg limit, No. 200 sieve passing, the compaction test and the CBR test results were involved. The soils in Yeongnam region, SM, SC, SP and CL by USCS have predominated approximately 79%. The test results show that average CBR values of gravel and sand range from 12.7% to 20.3% and those of silt and clay range from 4.8% to 7.1%. It means that average CBR values of fine grained soils are less than a half of coarse grained one. Natural water content, No. 200 sieve passing, optimum moisture content and maximum dry density of soils are well correlated with CBR values. Especially, it presents that No. 200 sieve passing is the best correlation factor with CBR value. If consider the partition off this region into 6 zones of classified by mother rock, the correlation between CBR value and every soil properties tends to increase. It is suggested that tables, figures and the regressions described in this paper may be available for designers and engineers to understand the characteristics of an embankment materials in Yeongnam region.

Coal Petrological Characteristics of Korean Coal (국내탄의 석탄암석학적 특성)

  • Park, Hong Soo;Park, Suk Whan
    • Economic and Environmental Geology
    • /
    • v.22 no.2
    • /
    • pp.141-150
    • /
    • 1989
  • In order to make economic and geological evaluation of coal in Korea, proximate and ultimate analyses were carried out as well as coal petrological studies such as maceral analyses, vitrinite reflectance and sporinite fluorescence measurement. The coeffcient of correlation between each factor of both conventional utilization and coal petrological parameters were studied as in Table 5 and 6. Their conclusions were as follow: (1) for anthracite, the good parameters of coal rank are mean vitrinite reflectance, carbon content, hydrogen content and H/C atomic ratio: (2) for brown coal and sub-bituminous coal, the good parameters of coal rank are carbon content, calorific value, moisture content, hydrogen content, oxygen content and O/C atomic ratio as well as vitrinite reflectance and sporinite fluorescence. An attempt is made to infer the coalforming environment by utilization of coal petrological analyses and to make comparison of coal analyses with proximate and ultimate analyses throughout the island arc region including Japan, Philippine and Indonesia and continental region including USA, Canada and Australia. As a result, meceral composition of Paleozoic and Mesozoic anthracite are similar to that of the Paleozoic continental coals, which were formed under dry conditions or low water table, but the coalification degree suddenly increased during Daebo orogeny (middle Jurassic to lower Cretaceous). The Tertiary coal resembles those of Tertiary island arc region coal characterized by higher calorific value, volatile matter content and H/C atomic ratio and by the formation of coal under wet conditions or higher water table.

  • PDF

Pollutant Removal and Characteristic of Floc by PACI Coagulation (PACI을 이용한 오염물질 제거 및 입자 특성에 관한 연구)

  • Moon, Byung-Hyun;Kim, Seung-Hyun;Lee, Hyang-In
    • Journal of Korean Society on Water Environment
    • /
    • v.16 no.4
    • /
    • pp.459-468
    • /
    • 2000
  • This study is to investigate the floc structure and removal of turbidity and organic matter by PACI coagulation. The turbidity removal by PACI coagulation was obtained at larger pH range than alum coagulation. And the removal of organic matter was obtained at smaller pH range than that of turbidity. The organic matter was removed by the adsorption of $Al(OH)_3$ precipitates. Floc structure was characterized by measuring fractal dimension and volume diameter using AIA and SALLS. Fractal dimension measured by AIA did not show the different characteristics of floc produced in sweep floe and charge neutralization region. Using SALLS, floes in sweep floc region were found to be larger size and fractal dimension than flocs in charge neutralization region. As pollutant removal increased. larger fractal dimension and size of floc were measured. SALLS method was found to be more useful method to characterize flocs in coagulation than AIA method.

  • PDF

Analysis of cooling phenomenon of water with the supercooled (과냉각을 동반한 순수물의 냉각현상 해석)

  • Chu, Mi-Seon;Yun, Jeong-In;Kim, Jae-Dol;Kamata, Yoshinobu;Kato, Toyofumi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.7
    • /
    • pp.862-872
    • /
    • 1997
  • Ice formation in a horizontal circular cylinder has been studied numerically. From the numerical analysis results, it was found that there were three types of freezing pattern and that freezing phenomenon was affected largely by density inversion and cooling rate. The type of freezing pattern largely depends on the secondary flow which is generated by density inversion. When supercooling energy is released before the development of the secondary flow, the annular ice layer grows. If the energy is released when the secondary flow is considerably developed and the supercooled region is removed to the upper half part of the cylinder, an asymmetric ice layer grows. And if the energy is released after perfect development of the secondary flow, instantaneous dendritic ice formation over the full region occurs. Furthermore, this secondary flow was found to have an effect on heat transfer characteristics. The heat transfer rate becomes small at the instant when the secondary flow is generated, but becomes large with the development of the flow. It's concluded that for the facilitation of heat transfer it is desirable to keep water in liquid phase until the secondary flow is perfectly developed. This study gave an instruction of performance improvement of capsule type ice storage tank.

Estimation of Sea Surface Current Vector based on Satellite Ocean Color Image around the Korean Marginal Sea

  • Kim, Eung;Ro, Young-Jae;Ahn, Yu-Hwan
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.816-819
    • /
    • 2006
  • One of the most difficult parameters to measure in the sea is current speed and direction. Recently, efforts are being made to estimate the ocean current vectors by utilizing sequential satellite imageries. In this study, we attempted to estimated sea surface current vector (sscv) by using satellite ocean color imageries of SeaWifs around the Korean Peninsula. This ocean color image data has 1-day sampling interval and spatial resolution of 1x1 km. Maximum cross-correlation method is employed which is aimed to detect similar patterns between sequential images. The estimated current vectors are compared to the surface geostrophic current vectors obtained from altimeter of sea level height data. In utilizing the color imagery data, some limitations and drawbacks exist so that in warm water region where phytoplankton concentration is relatively lower than in cold water region, estimation of sscv is poor and unreliable. On the other hand, two current vector fields agree reasonably well in the Korean South Sea region where high concentration of chlorophyll-a and weak tide is observed. In the future, with ocean color images of shorter sampling interval by COMS satellite, the algorithm and methodology developed in the study would be useful in providing the information for the ocean current around Korean Peninsula.

  • PDF

BIDIRECTIONAL FACTOR OF WATER LEAVING RADIANCE FOR GOCI

  • Han, Hee-Jeong;Ahn, Yu-Hwan;Ryu, Joo-Hyung
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.79-81
    • /
    • 2006
  • Geostationary ocean satellite, unlike other sun-synchronous polar-orbit satellites, will be able to take a picture of a large region several times a day (almost with every one hour interval). For geostationary satellite, the target region is fixed though the location of sun is changed always. Thus, the ocean signal of a given target point is largely dependent on time. In other words, the ocean signal detected by geostationary satellite sensor must translate to the signal of target when both sun and satellite are located in nadir, using another correction model. This correction is performed with a standardization of signal throughout relative geometric relationship among satellite - sun - target points. One signal value of a selected pixel point of the target region of Geostationary Ocean Colour Imager (GOCI) would be set up as a standard, and the ratio of all remained pixel point can be calculated. This relative ratio called bidirectional factor, the result of modelling of spatiotemporal variation of bidirectional factor is shown.

  • PDF

Study on Process Parameters for Effective H2 Production from H2O in High Frequency Inductively Coupled Plasma Reactor (고주파유도결합플라즈마 반응기에서 물로부터 수소생성효율을 높이기 위한 공정변수에 대한 연구)

  • Kwon, Sung-Ku;Jung, Yong-Ho
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.2
    • /
    • pp.206-212
    • /
    • 2011
  • The effect of process parameters on $H_2$ production from water vapor excited by HF ICP has been qualitatively examined for the first time. With the increase of ICP power, characteristics of $H_2$ production from $H_2O$ dissociation in plasma was divided into 3 regions according to both reaction mechanism and energy efficiency. At the edge of region (II) in the range of middle ICP power, energy effective hydrogen production from $H_2O$ plasma can be achieved. Furthermore, within the region (II) power condition, heating of substrate up to $500^{\circ}C$ shows additional increase of 70~80% in $H_2$ production compared to $H_2O$ plasma without substrate heating. This study have shown that combination of optimal plasma power (region II) and wall heating (around $500^{\circ}C$) is one of effective ways for $H_2$ production from $H_2O$.

Surface Emissivity Derived From Satellite Observations: Drought Index

  • Yoo, Jung-Moon;Yoo, Hye-Lim
    • Journal of the Korean earth science society
    • /
    • v.27 no.7
    • /
    • pp.787-803
    • /
    • 2006
  • The drought index has been developed, based on a $8.6{\mu}m$ surface emissivity in the $8-12{\mu}m$ MODIS channels over the African Sahel region (10-20 N, 13 W-35 W) and the Seoul Metropolitan Area (SMA: 37.2-37.7 N, 126.6-127.2 E). The emissivity indicates the $SiO_2$ strength and can vary interannually by vegetation, water vapor, and soil moisture, as a potential indicator of drought conditions. In a well-vegetated region close to 10 N of the Sahel, the Normalized Difference Vegetation Index (NDVI) showed high sensitivity, while the emissivity did not. On the other hand, the NDVI experienced negligible variability in a poorly vegetated region near 20 N, while the emissivity reflected sensitively the effects of atmospheric water vapor and soil moisture conditions. Seasonal variations of the emissivity (0.94-0.97) have been examined over the SMA during the 2003-2004 period compared to NDVI (or Enhanced Vegetation Index; EVI). Here, the dryness was more severe in urban area with less vegetation than in suburban area; the two areas corresponded to the north and south of the Han river, respectively. The emissivity exhibiting a significant spatial correlation of ${\sim}0.8$ with the two indices can supplement their information.

Effect of Preemptive Weld Overlay on Residual Stress Mitigation for Dissimilar Metal Weld of Nuclear Power Plant Pressurizer (예방 용접 Overlay가 원전 가압기 이종금속용접부 잔류응력 완화에 미치는 영향)

  • Song, Tae-Kwang;Bae, Hong-Yeol;Chun, Yun-Bae;Oh, Chang-Young;Kim, Yun-Jae;Lee, Kyoung-Soo;Park, Chi-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.10
    • /
    • pp.873-881
    • /
    • 2008
  • Weld overlay is one of the residual stress mitigation methods which arrest crack initiation and crack growth. Therefore weld overlay can be applied to the region where cracking is likely to be. An overlay weld used in this manner is termed a preemptive weld overlay(PWOL). In pressurized water reactor(PWR) dissimilar metal weld is susceptible region for primary water stress corrosion cracking(PWSCC). In order to examine the effect of PWOL on residual stress mitigation, PWOL was applied to a specific dissimilar metal weld of Kori nuclear power plant by finite element analysis method. As a result, strong compressive residual stress was made in PWSCC susceptible region and PWOL was proved effective preemptive repair method for weldment.

Assessment of N-16 activity concentration in Bangladesh Atomic Energy Commission TRIGA Research Reactor

  • Ajijul Hoq, M.;Malek Soner, M.A.;Salam, M.A.;Khanom, Salma;Fahad, S.M.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.1
    • /
    • pp.165-169
    • /
    • 2018
  • An assessment for determining N-16 activity concentrations during the operation condition of Bangladesh Atomic Energy Commission TRIGA Research Reactor was performed employing several governing equations. The radionuclide N-16 is a high energy (6.13 MeV) gamma emitter which is predominately created by the fast neutron interaction with O-16 present in the reactor core water. During reactor operation at different power level, the concentration of N-16 at the reactor bay region may increase causing radiation risk to the reactor operating personnel or the general public. Concerning the safety of the research reactor, the present study deals with the estimation of N-16 activity concentrations in the regions of reactor core, reactor tank, and reactor bay at different reactor power levels under natural convection cooling mode. The estimated N-16 activity concentration values with 500 kW reactor power at the reactor core region was $7.40{\times}10^5Bq/cm^3$ and at the bay region was $3.39{\times}10^5Bq/cm^3$. At 3 MW reactor power with active forced convection cooling mode, the N-16 activity concentration in the decay tank exit water was also determined, and the value was $4.14{\times}10^{-1}Bq/cm^3$.