• Title/Summary/Keyword: Water Quality Protection

Search Result 267, Processing Time 0.033 seconds

Studies on the Derivation Basis of Surface Water Quality Standards for Human Health Protection and Drinking Water Standards in Foreign Countries: 1,4-Dioxane, Formaldehyde, and Hexachlorobenzene (인체건강보호를 위한 수질환경 및 먹는물 기준에 대한 외국의 도출근거 연구 : 1,4-Dioxane, Formaldehyde, Hexachlorobenzene를 대상으로)

  • Kwak, Jin Il;An, Youn-Joo
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.6
    • /
    • pp.842-846
    • /
    • 2013
  • In 2012, the Korean Ministry of Environment (MOE) added 3 new water quality standards for the protection of human health; specifically, regarding 1,4-dioxane, formaldehyde, and hexachlorobenzene. In this study, we assimilated the water quality standards of these 3 substances from other countries, with respect to surface water quality standards for human health protection and drinking water standards. We subsequently investigated how these standard values were derived. 1,4-Dioxane is managed as an environmental standard for human health in Japan, and as a drinking water quality standard in WHO, New Zealand, and Japan with respect to both carcinogenic and non-carcinogenic effects. In New York, the oncogenic effects of formaldehyde in drinking water intake is considered, whereas WHO, Australia, New Zealand, and Japan also assess the non-carcinogenic effects of formaldehyde when setting their standards. USEPA and New York have a water quality standard for human health protection with respect to hexachlorobenzene based on carcinogenic effects. This study focuses on deriving water quality standards for the 3 new substances, or obtaining baseline information to revise the values of existing substances in the future.

A Study on Effects of Hydraulic Structure on River Environment(II) : Water Quality and Ecological Characteristics (수공구조물이 하천환경에 미치는 영향에 관한 연구(II) : 수질 및 생태학적특성)

  • 안승섭;최윤영;이수식
    • Journal of Environmental Science International
    • /
    • v.11 no.4
    • /
    • pp.309-317
    • /
    • 2002
  • In this study, water protection reservoir is selected as the target which is located at the estuary of Taehwa river to analyze and examine the effects of hydraulic structure on river environment. This study examined the water quality variation characteristics among many effects of hydraulic structure on river environment before and after removal of the sediment protection reservoir when low flow is yielded. This study aims at the definition of factors which cause the change of ecological environment of river due to the effects of the sediment protection reservoir, and the proposal of the direction of environmental friendly river space development through the comparison of stream variation conditions(depth, velocity, and etc.) and riverbed variation characteristics with ecological depth condition of Taehwa-river's channel for each representative species of fish and examination those. Firstly, from the examination result of water quality when low flow is yielded before and after removal of the sediment protection reservoir for problems about water quality of river due to flow amount decrease in river, it is found that DO decreases about 0.78~0.86ppm at the lower stream of Myeongchon-gyo, and BOD decreases about 0.06~0.24ppm from right upper stream to the direction of estuary when the sediment protection reservoir is removed. It is known from the above that there is some improvement of water quality from the lower stream of Taehwa-gyo to the estuary in case of removal the sediment protection reservoir. Nextly, it is thought that the effects on ecosystem due to water depth and draw down in channel is not serious on the basis of the examination of water quality analysis result according to removal of sediment protection reservoir and hydraulic depths for reservation of ecosystem, these are 10~40cm for breeding season, 10~50cm for fry period, and 10~100cm for adult period of the representative species of fish in Korea.

Ecological Risk Assessment of Chemicals of Concern for Initiation of Ecorisk-based Water Quality Standards in Korea (생태수질기준설정을 위한 대상물질의 생태위해성 평가)

  • An, Youn-Joo;Nam, Sun-Hwa;Kim, Yong-Hwa
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.5
    • /
    • pp.592-597
    • /
    • 2008
  • Current water quality standard (WQS) in Korea is based on the protection of human health, not considering the protection of aquatic organisms. Most of chemicals can be toxic to ecological biota as well as human. Health of aquatic biota is closely related to the human health via food chain, therefore ecological risk based-WQS needs to be developed to protect the aquatic ecosystem. In this study, we selected the 31 chemicals in the Project entitled 'Development of integrated methodology for evaluation of water environment'. The methodology for calculating water quality criteria was derived from the Australian and New Zealand processes for deriving guideline trigger value for aquatic ecosystem. The available ecotoxicity data were collected from US EPA's ECOTOXicology Database (ECOTOX), TOX-2000 Database, European Chemicals Bureau (ECB)'s International Uniform Chemical Information Database (IUCLID) and Environmental Protection Agency (US EPA)'s report 'Ambient Water Quality Criteria (AWQC)'. The aquatic toxicity data for the Korean species were selected for risk assessment to reflect the Korean water environment. The monitoring values were calculated from the water quality monitoring data four main Korean rivers. We suggested the order of priorities of chemicals based on ecological risk assessment. We expect that these results can be useful information for establishing the WQS for the protection of aquatic ecosystem.

A Study on Water Quality Standard for the Protection of Human Health and Aquatic Life (인체의 위해성과 수생태계를 고려한 수질환경기준 설정에 관한 연구)

  • Lee, Jae-Hyun;Kim, Yoon-Shin
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.6
    • /
    • pp.985-992
    • /
    • 2007
  • There are about 40,000 chemicals used in Korea and 300 new types of chemicals are added to the list every year, influencing quality of air, soil and water. Water quality standards that serve as the basis for water quality management have been proved inefficient and insufficient compared to those of advanced countries. This study aims to improve the existing water quality standards. Most importantly, the water quality standards need to take into account not only protection of human health but also aquatic resources. To that end, water quality criteria need to be set by monitoring each watershed every year and conducting risk assessment. Criteria for human health are set at $10^{-6}$ cancer risk level, and for aquatic life at conservative level, adopting the methodology of the U.S. and Australia, respectively. After carrying out technical and economic feasibility studies, more conservative criteria will be used to decide final water quality standards. The development of this system to establish integrated water quality standards for both human health and aquatic resources protection is urgently needed.

Development of Water Quality Modeling in the United States

  • Ambrose, Robert B;Wool, Tim A;Barnwell, Thomas O.
    • Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.200-210
    • /
    • 2009
  • The modern era of water quality modeling in the United States began in the 1960s. Pushed by advances in computer technology as well as environmental sciences, water quality modeling evolved through five broad periods: (1) initial model development with mainframe computers (1960s - mid 1970s), (2) model refinement and generalization with minicomputers (mid 1970s - mid 1980s), (3) model standardization and support with microcomputers (mid 1980s - mid 1990s), (4) better model access and performance with faster desktop computers running Windows and local area networks linked to the Internet (mid 1990s - early 2000s), and (5) model integration and widespread use of the Internet (early 2000s - present). Improved computer technology continues to drive improvements in water quality models, including more detailed environmental analysis (spatially and temporally), better user interfaces and GIS software, more accessibility to environmental data from on-line repositories, and more robust modeling frameworks linking hydrodynamics, water quality, watershed and atmospheric models. Driven by regulatory needs and advancing technology, water quality modeling will continue to improve to better address more complicated water bodies and pollutant types, and more complicated management questions. This manuscript describes historical trends in water quality model development in the United States, reviews current efforts, and projects promising future directions.

Expanding the Substances of Water Quality Standard for the Protection of Human Health Based on Risk Assessment (인체 위해성기반 수질환경기준 항목 확대를 위한 연구)

  • An, Youn-Joo;Nam, Sun-Hwa;Lee, Jae-Kwan
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.1
    • /
    • pp.34-42
    • /
    • 2008
  • Water quality standards (WQS) are mandatory to guarantee the human health and protection of aquatic ecosystems, and maintain the condition of suitable water quality. The present WQS for the protection of human health in Korea contain nine substances (As, Cd, $Cr^{6+}$, CN, Pb, Hg, ABS, organophosphorus compounds and PCBs), but it is insufficient to preserve the human and aquatic ecosystem from a variety of chemicals. Therefore, it is necessary to expand the substance of WQS for the protection of human health. In this study, we chose the 20 chemicals from 43 chemicals of the project entitled 'Development of Integrated Methodology for Evaluation of Water Environment'. The methodology for calculating water quality criteria was amended from the US Environmental Protection Agency (US EPA)'s equation for deriving ambient water quality criteria for the protection of human health. The factors including fish intake, drinking water intake, and human body weight used in the equation reflected Korean situations. The monitoring values were derived from the water quality monitoring data in Korean four main rivers. The orders of priorities of chemicals were evaluated by human health risk assessment, and the proposed WQS was derived by technical and economic analyses. These results were reflected to expand the WQS for the protection of human health.

The Delineation of Water-Pollutant Buffering Zone for Sustaining Better Drinking Water Quality Using a GIS (GIS를 이용한 상수원 보호를 위한 수변구역 지정에 관한 연구)

  • Kim, Kye-Hyun;Yoon, Ho-Seok;Kwon, Woo-Suk
    • Journal of Environmental Impact Assessment
    • /
    • v.9 no.3
    • /
    • pp.239-248
    • /
    • 2000
  • The aggravating water quality from the expansion of industrialization along with increasing population lead to develop more intensive physical measures to secure better drinking water quality. This study was mainly initiated to establish a water-pollutant buffering zone for the upper stream basin of Paldang--the major source area of drinking water for the metropolitan Seoul and suburban areas with a population more than 13 million. Two different criteria were considered in determining the buffering distance from the edge of the streamflow : 1km-width buffer zone for the special protection area which has been strictly controlled by the conventional laws for the protection of drinking water supply, and 500m-width buffer zone for the rest of the area. To delineate the exact boundaries of the water-pollutant buffering zone, GIS database was created integrating topography, hydrography, cadastral, and other related layers. The newly designated water-pollutant buffering zone would contribute to improve the water quality in a long term along with the conservation of the wet land. More study, however, should be made within the water-pollutant buffering zone such as the detailed survey of the pollutants, vegetation, and ecosystem for more effective management of the buffering zone.

  • PDF

Derivation of Agricultural Water Quality Guidelines for Heavy Metals in Korea (국내 농업용수의 유해중금속 수질권고기준 도출)

  • An, Youn-Joo;Baek, Yong-Wook;Lee, Woo-Mi;Yoon, Chun-Gyeong
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.5
    • /
    • pp.533-536
    • /
    • 2008
  • Korean water quality guidelines for agricultural were derived to protect agricultural water uses according to the Canadian methodology. The adverse effect of heavy metals in agricultural water was of concern due to its persistence, bioaccumulation and ecotoxicity to crop plants. The ecotoxicity data of cadmium, copper, lead, and zinc were collected for the crops grown in Korea, and used to estimate the species maximum acceptable toxicant concentration (SMATC), which corresponds to the water quality guideline. Values of irrigation per year and soil bulk density were revised to reflect the Korean situation. The estimated guideline values for cadmium, copper, lead, and zinc were 0.01, 0.5, 0.1, and 1.0 mg/L, respectively. These values are in agreement with the agricultural water quality guidelines of foreign countries and current Korean water quality standard for the protection of public health. Current water quality standards in agricultural uses were for management of public water resource, and was not prepared to protect crop plants from contaminants. The results of this study will be a basis for the designation of Korean water quality guidelines for the protection of agricultural water uses in the future.

Forecasting of Water Quality in Chinyang Reservoir Using ARIMA Model (ARIMA 모형을 이용한 진양호 수질의 장래예측)

  • Kim, Jong-oh;Yoo, Hwan-Hee;Kim, Ok-Sun;Park, Jung-Seok
    • Journal of Wetlands Research
    • /
    • v.1 no.1
    • /
    • pp.17-28
    • /
    • 1999
  • The purpose of this study was to analysis water quality monitoring data and to estimate future trends using ARIMA model of time series analysis. Water quality data in Chin yang reservoir were used with monthly monitoring interval during past 7 years. The variations of water quality parameters with periodicity and trend could be estimated by multiplicative ARIMA models and the statistical tests showed a good agreement with the observed data. Therefore, the monthly values of water quality parameters could be forecasted using these models.

  • PDF

Evaluation of the Effect of Bank Protection Concrete Blocks on Water and Soil Environmental Impact (하천 호안 콘크리트 블록이 수질 및 토양환경에 미치는 영향평가)

  • Yoo Jae Hwan;Park Youn Shik;Shin Hyun Oh;Lee Goen Hee;Lee Bo Hyun;Cha Sang-Sun;Park Chan-Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.1
    • /
    • pp.51-59
    • /
    • 2023
  • The study is to evaluate the effect of bank protection concrete block products to streams and soils. The effect on three types of bank protection concrete blocks was evaluated.. The first type was manufactured using fly ash, and the second and third type products used fine blast furnace slag powder. The laboratory and field Experiments test results showed the pHs of 9 or less. Also, any heavy metals were not detected in the heavy metal leaching tests. Although some iron (Fe) was partially detected, it still met the water quality standards. In addition, heavy metal was detected from all blocks by the US drinking water evaluation standards method. An on-site water quality and soil contamination tests were performed at the places that the blocks were implemented in practice. The test results showed that the application of the bank protection concrete block product did not lead to the water and soil quality degradation. Therefore, it was found that the hardened bank protection concrete block product did not elute harmful substances such as heavy metals that affect water and soil quality degradation.