• Title/Summary/Keyword: Water Quality Models

Search Result 464, Processing Time 0.028 seconds

Two-dimensional Numerical Modeling of Water Quality Variation by Gates Operation in the Seonakdong River (수문운영에 따른 서낙동강 수질변화에 관한 이차원 수치모의)

  • Lee, Namjoo;Kim, Young Do;Kwon, Jae Hyun;Shin, Chan Ki
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.1
    • /
    • pp.101-112
    • /
    • 2007
  • This study has used RMA2 model and RMA4 model, which are depth-averaged two-dimensional flow and water-quality prediction models, to analyze the variation of the water-quality by the gates operation in the Seonakdong River. Sensitivity analysis is performed to get the Manning coefficient and the coefficient of eddy viscosity for RMA2 model, and to get the diffusion coefficient for RMA4 model. Since the numerical simulation using RMA2 and RMA4 models did not consider tributary pollutant load except for that of Joman River, it could make a little difference from the natural phenomenon. Nevertheless, the numerical simulation shows that the discharge of $30m^3/s$, which is the continuous inflow from the Daedong-gate, can make it possible to achieve the target water-quality (BOD 4.3mg/L) of Nakbon-N watershed about 10 days later if the Daejeo-gate could remain opened in connection with the Noksan-gate operation.

A Study on Change of Sea Water Quality due to the Development Plan of Ilgwang Harbour (일광항의 항만개발에 따른 수질변화에 관한 연구)

  • 이중우;국승기
    • Journal of Korean Port Research
    • /
    • v.12 no.2
    • /
    • pp.303-312
    • /
    • 1998
  • It is necessary to quantitatively asses the influence of tidal currents to analysis the coastal current patterns before or after constructing offshore structures like as breakwaters. This assesment can be made through the use of simulation models designed to reproduce the water movements of the area. And it is very important to predict a phenomenon of pollutant dispersion in the area. In this study, in order to predict the changes of sea water quality for the port development plan, Ilgwang harbour, located at the east coast of Pusan, the numerical computations were carried out. The flow patterns were investigated before and after the development of the harbour bay and coastal area connected on it. The computational models are an extension of earlier work on the flow which used the ADI Method (Alternating Direction Implicit Method) in appling to Osaka Bay by KANEKO et al. The transport of pollutant constituents depends upon the currental characteristics of the water-transporting medium. In the currental flow model, water velocities and water levels are computed throughout the regions of it. These value are then used in the mass-balance equation to obtain the pollutant-constituent transport. As a result of this research, the present water quality of Ilgwang harbour and the coastal areas connected on it was proved out some good condition. The changes of sea water quality due to the port development plan of the Ilgwang habour bay and the coastal area were not large compared with the present condition, but it will be likely able to get worse by increasing the semi-enclosed areas in the harbour bay. In order to improve the water quality of the area after development, the method to activate tidal exchange in the area can be needed, as a mitigation technique.

  • PDF

A Model Study of Hypoxia in the Rappahannock Estuary, Verginia

  • Park, Kyeong
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1995.10a
    • /
    • pp.108-109
    • /
    • 1995
  • Hypoxia has persisted during summer in the bottom water of the lower portion of the Rappahannock Estuary, a western shore tributary of Chesapeake Bay. A laterally integrated two-dimensional, real-time model, consisting of linked hydrodynamic and water quality models, was developed to study the contributing processes for hypoxia. The hydrodynamic model gives the information of physical transport processes, both advective and diffusive, to the water quality model, which simulates the spatial and temporal distributions of eight water quality state variables. (omitted)

  • PDF

Development of a Decision Support System for Turbid Water Management through Joint Dam Operation

  • Kim, Jeong-Kon;Ko, Ick-Hwan;Yoo, Yang-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.31-39
    • /
    • 2007
  • In this study we developed a turbidity management system to support the operation for effective turbid water management. The decision-making system includes various models for prediction of turbid water inflow, effective reservoir operation using the selective withdrawal facility, analysis of turbid water discharge in the downstream. The system is supported by the intensive monitoring devices installed in the upstream rivers, reservoirs, and downstream rivers. SWAT and HSPF models were constructed to predict turbid water flows in the Imha and Andong catchments. CE-QUAL-W2 models were constructed for turbid water behavior prediction, and various analyses were conducted to examine the effects of the selective withdrawal operation for efficient high turbid water discharge, turbid water distribution under differing amount and locations of turbid water discharge. A 1-dimensional dynamic water quality model was built using Ko-Riv1 for simulation of turbidity propagation in the downstream of the reservoirs, and 2-dimensional models were developed to investigate the mixing phenomena of two waters discharged from the Andong and Imha reservoirs with different temperature and turbidity conditions during joint dam operation for reducing the impacts of turbid water.

  • PDF

New Zealand Hydrology: Key Issues and Research Directions

  • Davie, T.J.A.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1-7
    • /
    • 2007
  • New Zealand is a hydrologically diverse and active country. This paper presents an overview of the major hydrological issues and problems facing New Zealand and provides examples of some the research being undertaken to solve the problems. Fundamental to any environmental decision making is the provision of good quality hydrometric data. Reduced funding for the national hydrometric network has meant a reduction in the number of monitoring sites, the decision on how to redesign the network was made using information on geographic coverage and importance of each site. New Zealand faces a major problem in understanding the impacts of rapid land use change on water quantity and quality. On top of the land use change is overlain the issue of agricultural intensification. The transfer of knowledge about impacts of change at the small watershed scale to much larger, more complex watersheds is one that is attracting considerable research attention. There is a large amount of research currently being undertaken to understand the processes of water and nutrient movement through the vadose zone into groundwater and therefore understanding the time taken for leached nutrients to reach receiving water bodies. The largest water management issue of the past 5 years has been based around fair and equitable water allocation when there is increasing demand for irrigation water. Apart from policy research into market trading for water there has been research into water storage and transfer options and improving irrigation efficiency. The final water management issue discussed concerns the impacts of hydrological extremes (floods and droughts). This is of particular concern with predictions of climate change for New Zealand suggesting increased hydrological extremes. Research work has concentrated on producing predictive models. These have been both detailed inundation models using high quality LIDAR data and also flood models for the whole country based on a newly interpolated grid network of rainfall.

  • PDF

Numerical Simulation of Water Quality Enhancement by Removal of Contaminated Bed Material (하상오염물 제거에 의한 수질개선효과 수치모델링)

  • Lee, Nam-Joo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.3
    • /
    • pp.349-357
    • /
    • 2011
  • This study has an objective to estimate effect on water-quality enhancement by removal of contaminated river-bed material using a two-dimensional numerical modeling in the Seonakdong River, the Pyunggang River and the Maekdo River. RMA2 and RMA4 models were used for flow and contaminant transport simulation, respectively. After the analysis of the effects of flow restoration plan for the Seonakdong River system made by Lee et al (2008), simulation have been performed about scenarios which contains operations of the Daejeo Gate, the Noksan Gate, the Makdo Gate (on planning), and the Noksan Pumping Station. Because there is no option for elution from bed sediment in the RMA4 model, a simple technique has been used for initial condition modification for elution. The analyses revealed that the effect on water quality improvement due to dredging of bed sediment seemed to be less than 10 % of the total effect. The most efficient measure for the water quality improvement of the river system was the linked operation of water-gates and pumping station.

Testing Non-Stationary Relationship between the Proportion of Green Areas in Watersheds and Water Quality using Geographically Weighted Regression Model (공간지리 가중회귀모형(GWR)을 이용한 유역 녹지비율과 하천수질의 비균질적 관계 검증)

  • Lee, Sang-Woo
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.41 no.6
    • /
    • pp.43-51
    • /
    • 2013
  • This study aims to examine the presence of non-stationary relationship between water quality and land use in watersheds. In investigating the relationships between land use and water quality, most previous studies adopted OLS method which is assumed stationarity. However, this approach is difficult to capture the local variation of the relationships. We used 146 sampling data and land cover data of Korean Ministry of Environment to build conventional regressions and GWR models for BOD, TN and TP. Regression model and GWR models of BOD, TN, TP were compared with $R^2$, AICc and Moran's I. The results of comparisons and descriptive statistics of GWR models strongly indicated the presence of Non-Stationarity between water quality and land use.

Missing Value Imputation Technique for Water Quality Dataset

  • Jin-Young Jun;Youn-A Min
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.4
    • /
    • pp.39-46
    • /
    • 2024
  • Many researchers make efforts to evaluate water quality using various models. Such models require a dataset without missing values, but in real world, most datasets include missing values for various reasons. Simple deletion of samples having missing value(s) could distort distribution of the underlying data and pose a significant risk of biasing the model's inference when the missing mechanism is not MCAR. In this study, to explore the most appropriate technique for handing missing values in water quality data, several imputation techniques were experimented based on existing KNN and MICE imputation with/without the generative neural network model, Autoencoder(AE) and Denoising Autoencoder(DAE). The results shows that KNN and MICE combined imputation without generative networks provides the closest estimated values to the true values. When evaluating binary classification models based on support vector machine and ensemble algorithms after applying the combined imputation technique to the observed water quality dataset with missing values, it shows better performance in terms of Accuracy, F1 score, RoC-AuC score and MCC compared to those evaluated after deleting samples having missing values.