• Title/Summary/Keyword: Water Pipeline

Search Result 385, Processing Time 0.029 seconds

Experimental Study on Leak-induced Vibration in Water Pipelines Using Fiber Bragg Grating Sensors

  • Kim, Dae-Gil;Lee, Aram;Park, Si-Woong;Yeo, Chanil;Bae, Cheolho;Park, Hyoung-Jun
    • Current Optics and Photonics
    • /
    • 제6권2호
    • /
    • pp.137-142
    • /
    • 2022
  • Leak detection is one of the most important challenges in condition monitoring of water pipelines. Fiber Bragg grating (FBG) sensors offer an attractive technique to detect leak signals. In this paper, leak measurements were conducted on a water distribution pilot plant with a length of 270 m and a diameter of 100 mm. FBG sensors were installed on the pipeline surface and used to detect leak vibration signals. The leak was demonstrated with 1-, 2-, 3-, and 4-mm diameter leak holes in four different pipe types. The frequency response of leak signals was analyzed by fast Fourier transform analysis in real time. In the experiment, the frequency range of leak signals was approximately 340-440 Hz. The frequency shifts of leak signals according to the pipe type and the size of the leak hole were demonstrated at a pressure of 1.8 bar and a flow rate of 25.51 m3/h. Results show that frequency shifts detected by FBG sensors can be used to detect leaks in pipelines.

아파트 난방용 배관의 부식원인 규명 (Corrosion Analysis of the Pipeline for Heating System in a Apartment)

  • 이규환;장도연;김동수
    • 연구논문집
    • /
    • 통권28호
    • /
    • pp.209-218
    • /
    • 1998
  • The corrosion failure analysis for the heating pipeline of apartment was performed. Usually, the heating pipe was layed in the concrete. However, it was known that the corrosion problems could be induced by admixture containing chlorine such as set accelerant. antifreezer and so on. Therefore the new construction method using stone ash instead of concrete was attempt to solve these problems. However water leaking accidents by corrosion occurred after 1 month from the completion of the apartment. In this paper, the reason of corrosion failure was investigated by the field study and laboratory analysis in many aspects.

  • PDF

음향방출 기술을 이용한 상수도 배관 누수검출 알고리즘 (Water Pipeline Leak Detection using Acoustic Emission Techniques)

  • 정창홍;정인규;김종면
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2018년도 제58차 하계학술대회논문집 26권2호
    • /
    • pp.31-32
    • /
    • 2018
  • 상수도배관에 누수발생시 주변의 다른 주요 기반시설들에 피해를 줄 수 있어 상수도배관의 누수감지 시스템 개발이 필요하다. 본 논문에서는 상수도배관의 누수감지를 위해 음향방출 센서와 기계학습 알고리즘을 적용한 누수검출 알고리즘을 제안하였으며 모의실험결과 누수 전/후의 상태를 100% 검출하였다.

  • PDF

송배전관로 되메움용 순환골재의 열저항 측정 및 기존 열저항 예측 모델과의 비교 (Thermal Resistivity Measurement of Recycled Aggregates and Comparison with Conventional Prediction Model)

  • 위지혜;홍성연;최항석
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.199.1-199.1
    • /
    • 2010
  • Use of recycled aggregates that are constituents of concrete or asphalt-based structures has become popular because the recycling is an eco-friendly way to overcome the depletion of natural aggregates. In order to adopt the recycled aggregates for backfilling a power transmission pipeline trench, their thermal resistivity should be low enough to prevent thermal runaway in the transmission system. In this study, a series of laboratory tests with QTM-500 and KD2 Pro was performed to measure the thermal resistivity of recycled aggregates prepared from various sources. Relationships between the thermal resistivity of recycled aggregates and the water content have been obtained with consideration of compaction effort. Similar to natural soils, the thermal resistivity of the recycled aggregates decreases with increasing the water content. In addition, this study compared the experimental data with conventional prediction models for the thermal resistivity in the literature, which suggests the availability of the recycled aggregates as backfill material substituting for natural aggregates when backfilling the power transmission pipeline trench.

  • PDF

팔당 취수펌프장의 수격현상에 관한 수치해석적 연구 (Numerical Study on the Waterhammer of PalDang Intake Pumping Station)

  • 김경엽;유택인
    • 한국유체기계학회 논문집
    • /
    • 제3권4호
    • /
    • pp.52-58
    • /
    • 2000
  • The numerical study on the waterhammer was carried out for the intake pumping station of the metropolitan water supply 6th stage project. Because the waterhammer problems as a result of the pump power failure were the most important, these situations were carefully investigated. The surge tank and the stand pipes effectively protected the tunnels md the downstream region of pipeline from the pressure surge. In case the moment of inertia of the pump and motor was above $5080\;kg{\cdot}m^2$, the column separation did not occur in the pipeline between the pumping station and the inlet of 1st tunnel. As the moment of inertia increased, the pressure surges decreased in the pipeline conveying raw water. The pump control valve was chosen as the main surge suppression device for the intake pumping station. After power failure, the valve disc should be rapidly closed in 2.5 seconds and controlled the final closure to 15 seconds by the oil dashpot. If the slamming happened to the pump control valve, there was some danger of this system damaging. As the reverse flow through the valve increased, the upsurge extremely increased.

  • PDF

PIV를 이용한 비만관내 유속 분포 측정 (Measurements of Velocity Profiles Inside a Partially Filled Pipeline Using PIV)

  • 최중근;성재용;이명호
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.773-778
    • /
    • 2006
  • Velocity profiles inside a partially filled pipline have been investigated experimentally. To measure the velocity fields, a particle image velocimetry (PIV), which is a recent quantitative visualization technique, is applied. The velocity profile inside a circular pipe is well known, but if the pipe is partially filled, the problem is entirely different in the sense that the velocity distribution is significantly affected by the slope of pipe and filled water level, and so on. In order to calculate exact flow rate in the open channel or partially filled pipeline, three-dimensional velocity distributions at a given cross-sectional area are measured and compared the flow rates with the previously known empirical formula of Manning equation. The results show that the velocity profiles at center plane is considerably different from each other when the slope and water level change. Thus, The three-dimensional velocity profile can be the most plausible estimate for the exact flow rate.

  • PDF

잔류공기조건에 따른 관 내 유동의 압력변화에 관한 실험적 연구 (An Experimental Study of Pressure Variation in Pipe Flow according to Residual Air Condition)

  • 박재곤;이경수;고주석;류시완
    • 한국안전학회지
    • /
    • 제37권4호
    • /
    • pp.113-119
    • /
    • 2022
  • Sudden intrusion of a large amount of surface water into a flood defensive tunnel or pipeline system can compress the residual air. The compressed air may explode along with water through the inlet or air vent, resulting in hydraulic capacity degradation or safety hazards. This study aims to investigate the behavior of compressed air body in pipelines according to the residual air condition with a series of laboratory experiments measuring pressure variation. It has been found that flow characteristics and residual air conditions have a dominant influence on the magnitude and periodicity of the pressure variation. A proper measure to effectively control the residual air is required for securing the design capacity of flood defensive pipeline systems, since the peak pressure is predominantly affected by residual air conditions.

도수관로 실시간 관파손감지를 위한 물수지 분석 방법 적용 및 성능평가 (Application and performance evaluation of mass balance method for real-time pipe burst detection in supply pipeline)

  • 신은허;정기문;김경필;최태호;채선하;조용우
    • 상하수도학회지
    • /
    • 제37권6호
    • /
    • pp.347-361
    • /
    • 2023
  • Water utilities are making various efforts to reduce water losses from water networks, and an essential part of them is to recognize the moment when a pipe burst occurs during operation quickly. Several physics-based methods and data-driven analysis are applied using real-time flow and pressure data measured through a SCADA system or smart meters, and methodologies based on machining learning are currently widely studied. Water utilities should apply various approaches together to increase pipe burst detection. The most intuitive and explainable water balance method and its procedure were presented in this study, and the applicability and detection performance were evaluated by applying this approach to water supply pipelines. Based on these results, water utilities can establish a mass balance-based pipe burst detection system, give a guideline for installing new flow meters, and set the detection parameters with expected performance. The performance of the water balance analysis method is affected by the water network operation conditions, the characteristics of the installed flow meter, and event data, so there is a limit to the general use of the results in all sites. Therefore, water utilities should accumulate experience by applying the water balance method in more fields.

최신 설계규정에 의한 심해 해저관로 두께의 기계적 설계 (Mechanical Design of Deepwater Pipeline Wall Thickness Using the Recent Rules)

  • Han-Suk Choi
    • 한국해양공학회지
    • /
    • 제16권6호
    • /
    • pp.65-70
    • /
    • 2002
  • This paper presents a mechanical design of the deepwater pipeline wall thickness using the recent design rules. Characteristics and limitations of the new codes were identified through a case study design in the Gulf of Mexico. In addition to the ASME, API, and DVD codes, the code of federal regulations (CFR) was also utilized in the design. It was found that conservatism still exists within the collapse prediction for water depth greater than 1500m. Comparision of the results from DNV and API codes were presented.

유도파 기반 장거리 파이프라인 검사를 위한 모니터링 센서의 위치결정 (Determinating Sensor Location for Guided-Wave-Based Long Range Pipeline Inspection)

  • 나원배;류연선;김정태
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.232-239
    • /
    • 2006
  • Guided wave techniques have been used for pipeline inspection because of the long range inspection capability of guided waves. One of main concerns of these technique is how ones decide the axial interval of sensors when they are utilized for pipeline inspection. This question is related to the characteristic of cylindrical guided wave propagation, especially wave attenuation. Thus, attenuation of fundamental longitudinal guided wave propagating liquid-filled steel pipes is numerically investigated in the paper. Several liquids such as water, diesel oil, castor oil etc. are considered for the filing materials in the pipes. Sink is considered for numerical models for abandoning standing wave modes; hence, the attenuation dispersion curves become much simpler. Those attenuation calculations can be utilized for guided-wave-based nondestructive testing of pipelines when one inspects pipelines, using monitoring sensors, which are installed outside pipes.

  • PDF