• Title/Summary/Keyword: Water Network

Search Result 2,027, Processing Time 0.027 seconds

A Jittering-based Neural Network Ensemble Approach for Regionalized Low-flow Frequency Analysis

  • Ahn, Kuk-Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.382-382
    • /
    • 2020
  • 과거 많은 연구에서 다수의 모형의 결과를 이용한 앙상블 방법론은 인공지능 모형 (artificial neural network)의 예측 능력에 향상을 갖고 온다 논하였다. 본 연구에서는 미계측유역의 저수량(low flow)의 예측을 위하여 Jittering을 기반으로 한 인공지능 모형을 제시하고자 한다. 기본적인 방법론은 설명변수들에게 백색 잡음(white noise)를 삽입하여 훈련되는 자료를 증가시키는 것이다. Jittering을 기반으로 한 인공지능 모형에 대한 효과를 검증하기 위하여 본 연구에서는 Multi-output neural network model을 기반으로 모형을 구축하였다. 다음으로 Jittering을 기반으로 한 앙상블 모형을 variable importance measuring algorithm과 결합시켜서 유역특성치와 예측되는 저수량의 특성치들의 관계를 추론하였다. 본 연구에서 사용되는 방법론들의 효용성을 평가하기 위해서 미동북부에 위치하고 있는 총 207개의 유역을 사용하였다. 결과적으로 본 연구에서 제시한 Jittering을 기반으로 한 인공지능 앙상블 모형은 단일예측모형 (single modeling approach)을 정확도 측면에서 우수한 것으로 확인되었다. 또한, 적은 숫자의 앙상블 모형에서도 그 정확성이 단일예측모형보다 우수한 것을 확인하였다. 마지막으로 본 연구에서는 유역특성치들의 효과가 살펴보고자 하는 저수량의 특성치들에 따라서 일관적으로 영향을 미치거나 그 중요도가 변화하는 것을 확인하였다.

  • PDF

통계분석을 이용한 지하수위 변동 특성 분류

  • 문상기;우남칠
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.09a
    • /
    • pp.155-159
    • /
    • 2001
  • A study on multivariate statistical classification of ground water hydrographs was conducted. The vast data of national ground water monitoring network (78 sites of alluvium) were used. 6 factors were selected to classify the ground water level change. Factor analysis was proved to be useful tool for classifying vast hydrogeological data.

  • PDF

Propagation Environment Analysis and Wireless Mesh Network Implementation for monitoring the Four Rivers (based on Hapcheon weir) (4대강 주변 하천모니터링을 위한 무선 메쉬 네트워크 전파환경 분석 및 구축(합천보 중심으로))

  • Hong, Sung-Taek;Jin, Ryeok-Min
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.6
    • /
    • pp.127-134
    • /
    • 2012
  • Four river project in the South Korea contributes to solve flood damages and water shortages. Also, it has purpose for creating water ecosystem and improving the level of people' cultural leisure and quality of life through inducing water quality improvement and river restoration. It is necessary to monitor a variety of observing data in river areas among dozens to hundreds of kilometer for safe river administration. The 20th construction area of the four river project is located on Hapcheon areas, where wireless mesh network was installed to manage the basin. In the process of network construction, the characteristic of surrounding areas is considered about embodying secure service by investing the least expense. Besides, transmission environment analysis is performed such as LOS tests and reception level analysis, and transmission speed measurement to create safe service. Reception level in all places is confirmed among -55 dBm ~ -70 dBm, and data transmission speed proves more than 20 Mbps.

Performance Evaluation of a Bandwidth Allocation Algorithm of E-PON (가입자 통신망을 위한 대역 할당 알고리즘 성능 분석)

  • Ju, Un-Gi;Lee, Sang-U;Kim, Chan;Gwon, Yul
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.10a
    • /
    • pp.361-364
    • /
    • 2005
  • As increasing the Internet traffic, many researches on access network are reported for end-to-end high-speed broadband network, where E-PON(Ethernet-Passive Active Network) is one of reasonable candidate fur the network with respect to cost and bandwidth utilization. For the high-speed access network, E-PON need an efficient bandwidth allocation method. This paper suggests a WFA(Water-Filling Allocation) algorithm for the efficient bandwidth allocation with various simulation test.

  • PDF

A study on the use of fire hydrants as a heat wave reduction facility through hydraulic analysis of water supply network (상수관망 수리해석을 통한 폭염 저감 시설로써의 소화전 활용방안연구)

  • Hong, Sung Jin;Choi, Doo Yong;Yoo, Do Guen
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.12
    • /
    • pp.1215-1222
    • /
    • 2021
  • In this study, a study on how to use a fire hydrant as a heat wave reduction facility through hydraulic analysis of the water supply pipe network was conducted. Assuming that the fire hydrant installation point is open for heat wave reduction, the water pressure at each point was derived. And the reduction rate of the temperature according to the hydrant watering was compared with the watering area according to the operation of the watering truck. The watering area according to the opening of the fire hydrant was calculated by deriving the pressure value at the node where the fire hydrant was installed through hydraulic analysis of the water pipe network, and then using the watering radius relational expression according to the pressure value. As a result of applying the proposed methodology to two real city areas, the temperature reduction effect of the watering method by a fire hydrant can be derived lower than the watering method by a watering truck according to the difference in the absolute watering area. However, unlike a watering truck, a fire hydrant does not have a relative restriction on the amount of water supply and is expected to allows continuous divided spraying of the same area.

Optimization of Water Reuse System under Uncertainty (불확실성을 고려한 하수처리수 재이용 관로의 최적화)

  • Chung, Gun-Hui;Kim, Tae-Woong;Lee, Jeong-Ho;Kim, Joong-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.2
    • /
    • pp.131-138
    • /
    • 2010
  • Due to the increased water demand and severe drought as an effect of the global warming, the effluent from wastewater treatment plants becomes considered as an alternative water source to supply agricultural, industrial, and public (gardening) water demand. The effluent from the wastewater treatment plant is a sustainable water source because of its good quality and stable amount of water discharge. In this study, the water reuse system was developed to minimize total construction cost to cope with the uncertain water demand in future using two-stage stochastic linear programming with binary variables. The pipes in the water reuse network were constructed in two stages of which in the first stage, the water demands of users are assumed to be known, while the water demands in the second stage have uncertainty in the predicted value. However, the water reuse system has to be designed now when the future water demands are not known precisely. Therefore, the construction of a pipe parallel with the existing one was allowed to meet the increased water demands in the second stage. As a result, the trade-off of construction costs between a pipe with large diameter and two pipes having small diameters was evaluated and the optimal solution was found. Three scenarios for the future water demand were selected and a hypothetical water reuse network considering the uncertainties was optimized. The results provide the information about the economies of scale in the water reuse network and the long range water supply plan.

A Study on the Simulation of Runoff Hydograph by Using Artificial Neural Network (신경회로망을 이용한 유출수문곡선 모의에 관한 연구)

  • An, Gyeong-Su;Kim, Ju-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.1
    • /
    • pp.13-25
    • /
    • 1998
  • It is necessary to develop methodologies for the application of artificial neural network into hydrologic rainfall-runoff process, although there is so much applicability by using the functions of associative memory based on recognition for the relationships between causes and effects and the excellent fitting capacity for the nonlinear phenomenon. In this study, some problems are presented in the application procedures of artificial neural networks and the simulation of runoff hydrograph experiences are reviewed with nonlinear functional approximator by artificial neural network for rainfall-runoff relationships in a watershed. which is regarded as hydrdologic black box model. The neural network models are constructed by organizing input and output patterns with the deserved rainfall and runoff data in Pyoungchang river basin under the assumption that the rainfall data is the input pattern and runoff hydrograph is the output patterns. Analyzed with the results. it is possible to simulate the runoff hydrograph with processing element of artificial neural network with any hydrologic concepts and the weight among processing elements are well-adapted as model parameters with the assumed model structure during learning process. Based upon these results. it is expected that neural network theory can be utilized as an efficient approach to simulate runoff hydrograph and identify the relationship between rainfall and runoff as hydrosystems which is necessary to develop and manage water resources.

  • PDF

Optimum Design of Water Distribution Network with a Reliability Measure of Expected Shortage (부족량기대치를 이용한 배수관망의 신뢰최적설계)

  • Park, Hee-Kyung;Hyun, In-Hwan;Park, Chung-Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.1
    • /
    • pp.21-32
    • /
    • 1997
  • Optimum design of water distribution network(WDN) in many times means just reducing redundancy. Given only a few situations are taken into consideration for such design, WDN deprived of inherited redundancy may not work properly in some unconsidered cases. Quantifying redundancy and incorporating it into the optimal design process will be a way of overcoming just reduction of redundancy. Expected shortage is developed as a reliability surrogate in WDN. It is an indicator of the frequency, duration and severity of failure. Using this surrogate, Expected Shortage Optimization Model (ESOM) is developed. ESOM is tested with an example network and results are analyzed and compared with those from other reliability models. The analysis results indicate that expected shortage is a quantitative surrogate measure, especially, good in comparing different designs and obtaining tradeoff between cost and. reliability. In addition, compared other models, ESOM is also proved useful in optimizing WDN with reliability and powerful in controlling reliability directly in the optimization process, even if computational burden is high. Future studies are suggested which focus on how to increase applicability and flexibility of ESOM.

  • PDF

A Study on the Design Method of Cold & Hot Water Manifold System for Residential Buildings through the Piping Network Analysis (관망해석을 통한 주거용 건축물의 급수.급탕 헤더시스템 설계 방안에 관한 연구)

  • Cha, Min-Chul;Seok, Ho-Tae;Kim, Dong-Woo
    • Journal of the Korean housing association
    • /
    • v.19 no.5
    • /
    • pp.111-120
    • /
    • 2008
  • The aim of this study is to present the design methods about manifold location being installed and size and to draw out the proper piping size as comparing the fluctuation of discharge with manifold size and residence size through the piping network analysis, when using the same faucet in accordance. The findings are summarized as follows, 1) an appropriate header main body pipe diameter was deemed to be $32{\sim}50\;mm$. 2) the research presented design measures for the application of appropriate water supply inlet pipe diameters according to residential buildings with various sizes. 3) the header direct branch piping method is ideal for small and medium-sized residential complexes, and the header branching and semi header methods are deemed to be more favorable for large residential complexes. 4) this study offered design measures for appropriate header system main body pipe diameters, water supply inlet pipe diameters, header system piping methods, application methods for functional auxiliary equipment units, and header system installation spaces and location.