• Title/Summary/Keyword: Water Mist Nozzle

Search Result 58, Processing Time 0.023 seconds

Ethanol Pool Fire Extinguishing Experiment Using Twin-fluid Nozzle Supplied with Water and Air (물과 공기가 공급되는 2유체노즐을 활용한 에탄올 풀화재 소화 실험)

  • Jeong, Chan Seok;Lee, Chi Young
    • Fire Science and Engineering
    • /
    • v.33 no.3
    • /
    • pp.37-43
    • /
    • 2019
  • In this study, ethanol pool fire extinguishing experiments were conducted using a twin-fluid nozzle. Ethanol pool fires, 5.027×10-3 ㎡ and 1.131×10-2 ㎡ in size (80 mm and 120 mm in fuel pan diameter, respectively), were tested, and the flow rates supplied to the twin-fluid nozzle for fire extinguishing were 156-483 g/min and 20-70 L/min for water and air, respectively. The heat release rate increased with increasing fire source area, and heat release rates of 5.027×10-3 ㎡ and 1.131×10-2 ㎡ in size were measured to be 1.01 kW and 5.51 kW, respectively. For both fire source cases in the present experimental range, regardless of the water flow rates, the ethanol fires were extinguished successfully under the high air flow rate condition (e.g., above 40 L/min). On the other hand, under all water flow rate conditions, the fire extinguishing time and water consumption decreased with increasing air flow rate, which were approximately 23 s and 185 g under high air flow rate conditions (e.g., above 50 L/min), respectively. Based on the water consumption per heat release rate, the present experimental data were compared with the previous ones using a single-fluid nozzle, and it was found that the twin-fluid nozzle could extinguish a fire with a lower water consumption than a single-fluid one.

Experimental Study on the Extinguishing Characteristics of Twin-fluid Nozzle using a Small-scale Hexane Pool Fire (소규모 헥산 풀화재를 이용한 2유체노즐의 소화 특성에 대한 실험적 연구)

  • Jeong, Chan Seok;Lee, Chi Young
    • Fire Science and Engineering
    • /
    • v.32 no.3
    • /
    • pp.35-41
    • /
    • 2018
  • Experiments were performed on 140 ml hexane pool fire extinguishment using a twin-fluid nozzle. For this pool fire, the area of the fire source (round shape of 80 mm in diameter) was $0.005027m^2$ and the measured heat release rate was 2.81 kW. The flow rates of water and gas (air and nitrogen) supplied to the twin-fluid nozzle were 156-483 g/min (~0.156-0.483 l/min) and 30-70 l/min, respectively. In the present experimental ranges, the high gas flow rate conditions led to the successful extinguishing of the pool fire. Under the low gas flow rate conditions in the extinguishment regime, the extinguishment time was long and the estimated water consumption was high. Under high gas flow rate conditions, however, the water flow rate conditions did not appear to have a great impact on the extinguishment time and estimated water consumption. On the other hand, in the present experimental ranges, the types of supply gas did not appear to affect the extinguishable flow rate condition, extinguishment time, and estimated water consumption. Finally, using the present experimental results with previous ones using a single-fluid nozzle, the water consumption of twin-fluid and single-fluid nozzles for extinguishing a 140 ml hexane pool fire were preliminarily compared and discussed.

Numerical Analysis of the Effects of Droplets Characteristics of Water Spray on Fire Suppression (물 분무 액적 특성이 화재진압에 미치는 영향에 대한 수치해석)

  • Lee, Jaiho
    • Fire Science and Engineering
    • /
    • v.33 no.6
    • /
    • pp.1-8
    • /
    • 2019
  • In this study, the effects of the characteristics of droplets of water spray on suppression of fire were analyzed numerically using fire dynamics simulator (FDS) 6.5.2. Additionally, the fire suppression characteristics by the water spray nozzle, including the extinguishing coefficient (EC), droplet size distribution function (SDF), median volumetric diameter (MVD), and droplets per second (DPS), were evaluated in terms of the decreasing normalized heat release rate (HRR) curve and cooling time. It was observed that with increase in the EC, the normalized HRR curve decreased rapidly, and the changing MVD affected the suppression of fire. In case of mono-disperse, the normalized HRR curve decreased slowly with the increase in DPS. On the contrary, in case of multi-disperse, the normalized HRR curve decreased rapidly even with a small increase in DPS.

Study on the Fire Extinguishing Performance of the Water Mist Gun used Twin-Fluid having a Low Pressure Nozzle (Twin-Fluid를 이용한 저압용 미분무 건의 소화성능에 관한 연구)

  • Park, Jeong-Yeul;Myoung, Sang-Youb;Ryou, Hong-Sun
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2011.11a
    • /
    • pp.175-178
    • /
    • 2011
  • 본 연구에서는 기존의 고압으로 작동되는 고압 미분무 건과는 달리 Twin-Fluid의 Turbulence 및 Break-up 현상 등을 이용하여 저압상태에서 작동하며 경량화 및 소형화에 성공하여 기존 소방관의 진입이 어려운 장소 또는 수원으로부터 멀리 떨어진 곳에서 원활한 소화활동을 위해 개발한 저압용 미분무 건의 성능을 화재소화능력 시험을 통해 입증하였다. 화재 소화능력 시험을 수행한 결과 물과 질소가 Mixing Chmaber 내부에서 혼합되면서 두 유체간의 상호작용 및 운동 에너지으로 인해 물의 액적이 미세하게 Atomizing되어 목재화재는 물론 유류화재의 진압에 있어서도 우수한 성능을 확인할 수 있었다.

  • PDF

Fire extinguishing Performance of the Water mist nozzle for Accommodation of Cruise ships (특수선 및 크루즈선 거주구역용 미분무수 노즐의 화재진압성능평가 - 공공장소 화재시험 -)

  • Kwark, Ji-Hyun;Kim, Young-Han
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2010.04a
    • /
    • pp.141-146
    • /
    • 2010
  • 특수선(FPSO, Drillship)의 거주구역이나, 대형 여객선(크루즈선) 공간의 70% 이상을 차지하는 수용시설(accommodation) 즉, 객실, 라운지, 공공장소, 창고 등은 24시간 사람이 상주하는 구역임으로 화재로부터 완벽하게 보호되어야 한다. 이를 위해 국제해사기구(IMO)에서는 SOLAS II-2 Reg. 10.6과 FSS code Ch. 8에 적합한 미분무수 소화설비를 설치할 것을 강제화하고 있다. 이러한 미분무수 소화설비는 미분무수 노즐, 압력용기, 섹션밸브, 펌프유닛 등으로 구성되는데 특히 핵심부품인 미분무수 노즐은 IMO Res. MSC 265(84)에 따라 노즐성능시험 및 화재진압성능시험을 통해 형식승인을 득해야 한다. 본 연구에서 이러한 기준에 만족하는 미분무수 노즐을 개발하고자 선실 및 복도에 대한 화재시험에 이어 공공장소 화재시험을 수행하였으며, 두 가지 천장 높이에 대한 화재진압성능을 평가하였다.

  • PDF

An experimental study on the thermal response characteristic for a water mist nozzle in accommodation on passenger ships (선박 거주구역용 미분무수 노즐의 열응답 특성에 관한 실험적 연구)

  • Han, Yong-Shik;Choi, Byung-Il;Kim, Myung-Bae;Lee, Yu-Whan;Do, Kyu-Hyung;Kim, Chang
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2010.10a
    • /
    • pp.163-166
    • /
    • 2010
  • 여객선 선실 등 선박 거주구역에 사용되는 노즐의 열응답 특성에 관한 실험적 연구를 수행하였다. IMO(국제해사기구)의 수계소화설비 성능평가 기준에 따르면 구주구역에 설치되는 소화시스템의 노즐은 조기 반응 응답 특성을 확보하여야 한다. 본 연구에서는 glass bulb의 선정과 풍동실험을 통해 반응 응답 값을 측정하였으며, 노즐 헤드 형상의 개선을 통해 IMO 기준이 요구하는 RTI(반응시간지수) < $50ms^{1/2}$의 조건을 만족하는 노즐 헤드를 개발하였다.

  • PDF

Study on Characteristic of CO2 Hydrate Formation Using Micro-sized Ice (미세직경 얼음을 이용한 CO2 하이드레이트 제조특성 연구)

  • Lee, Jong-Hyub;Kang, Seong-Pil
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.690-695
    • /
    • 2012
  • Gas hydrate is an inclusion compound consisting of water and low molecular weight gases, which are incorporated into the lattice structure of water. Owing to its promising aspect to application technologies, gas hydrate has been widely studied recently, especially $CO_2$ hydrate for the CCS (Carbon Capture and Storage) issue. The key point of $CO_2$ hydrate technology for the CCS is how to produce gas hydrate in an efficient and economic way. In this study, we have tried to study the characteristic of gas hydrate formation using micro-sized ice through an ultrasonic nozzle which generate 2.4 MHz frequency wave. $CO_2$ as a carrier gas brings micro-sized mist into low-temperature reactor, where the mist and carrier gas forms $CO_2$ hydrate under $-55^{\circ}C$ and atmospheric pressure condition and some part of the mist also remains unreacted micro-sized ice. Formed gas hydrate was average 10.7 of diameter at average. The starting ice particle was set to constant pressure to form $CO_2$ hydrate and the consumed amount of $CO_2$ gas was simultaneously measured to calculate the conversion of ice into gas hydrate. Results showed that the gas hydrate formation was highly suitable because of its extremely high gas-solid contact area, and the formation rate was also very high. Self-preservation effect of $CO_2$ hydrate was confirmed by the measurement of $CO_2$ hydrate powder at normal and at pressed state, which resulted that this kind of gas storage and transport could be feasible using $CO_2$ hydrate formation.

Thermal Environment Transition of Response Climate Change and Heat Wave Application Evaporative Cooling System (기후변화 및 폭염대응 증발냉각시스템 적용에 따른 내·외부 열환경 변화 연구)

  • Kim, Jeong-Ho;Kim, Hak-Gi;Yoon, Yong-Han;Kwon, Ki-Uk
    • Journal of Environmental Science International
    • /
    • v.25 no.9
    • /
    • pp.1269-1281
    • /
    • 2016
  • This study evaporative cooling system a heat wave climate change and reduction of the inside and outside thermal environment change research. Measurement items included micro meteorological phenomena and measured comfort indices. A micro meteorograph of temperature, relative humidity, surface temperature, and the comfort indices of WBGT, UTCI, and PMV were measured. The difference in inside and outside temperatures were compared for different land types, with the largest difference found in Type A ($4.81^{\circ}C$), followed by Type B ($4.40^{\circ}C$) and Type C ($3.12^{\circ}C$). Relative humidity was about 10.43% higher inside due to water injection by the evaporative cooling system. Surface temperature was inside about $6.60^{\circ}C$ higher than the outside all types. WBGT were Type A ($3.50^{\circ}C$) > Type B ($2.71^{\circ}C$) > Type C ($1.88^{\circ}C$). UTCI was low heat stress inside than outside all types. PMV was analysed Type C for inside predicted percentage of dissatisfied 75%, other types was percentage of dissatisfied 100% by inside and outside. Correlation analysis between land cover type and temperature, surface temperature, pmv, utci. T-test analysed inside and outside temperature difference was significant in all types of land.