• Title/Summary/Keyword: Water Management Information

Search Result 1,286, Processing Time 0.034 seconds

Characterization on the Pollution Discharge Load at the Unit Watershed for the Management of Total Maximum Daily Loads - in Guem River Basin (수질오염총량관리 단위유역별 오염물질 배출부하량 특성분석 - 금강수계를 대상으로)

  • Park, Jun Dae;Choi, Ok Youn;Oh, Seung Young
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.6
    • /
    • pp.786-795
    • /
    • 2012
  • Water quality management should be focused on the pollution concentrated area so that the improvement of water quality can be achieved effectively for the management of Total Maximum Daily Loads (TMDLs). It is necessary to consider discharge characteristics in the TMDL plan. This study analysed discharge characteristics such as pollution generation and discharge load density, and reduction potential by each unit watershed, and categorized the unit watershed into four groups according to its discharge load characteristics. This analysis can be used as helpful information for the prioritization of pollution reduction area and selection of pollution reduction measures in the development of TMDL plans.

Research in information & communication technology for water in the four major rivers restoration project (4대강 사업에서 수자원 정보통신기술 발전방향연구)

  • Seo, Gang-Do;Jang, Sang-Bok;Lee, Dong-Hoon;Hwang, Jae-moon;Park, Byung-Don
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.184-187
    • /
    • 2013
  • The Four Major Rivers Restoration Project of is the multi-purpose green growth project in South Korea. Some of the project was progressed by K-water and was declared complete on October 21, 2011. The Four Rivers Restoration Project of Korea was designed to be a packaged project that aims to resolve water-related problems such as floods and droughts and revitalize Korean public spaces near the water. K-water have applied the latest ICT(Information and Communication Technology) for the operating management of 4 Rivers Project facilities. We also have applied ICT for integrating drinking water production facilities. Applying these ICT, we have many experience for integrated water resources management, so we proposed. The first is that the big data collected should be analyzed for making decisions and taking actions while considering multiple viewpoints of how water should be managed. The second is that the new MMI(Man Machine Interface) program should be developed to use domestic needs and promote ease of maintenance for the integrated operation. The third is that the standardization of communication protocol is needed for seamless communication between equipments.

  • PDF

A network approach to local water management for building collaborative water governance: the case of Jeju special self-governing province (지방자치단체의 협력적 물 거버넌스 구축을 위한 네트워크 분석: 제주특별자치도의 물관리 사례를 중심으로)

  • Kim, Boram;Yang, Wonseok;Ahn, Jongho
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.9
    • /
    • pp.671-680
    • /
    • 2020
  • This study aims to explore structural properties and central actors of the local water policy system through a network approach, and to suggest practical implications for establishing collaborative water governance at the local level. Especially, this study conducts a social network analysis to empirically analyze the actors' roles and relationships of water management in Jeju Special Self-Governing Province and represent them with sociograms. In this study, the local water management network is divided into two dimensions: official work network, public-private policy network based on information-sharing and consultation. Also, the networks are divided into a whole network and two sectoral networks(water-use/water-quality). This study found some meaningful differences of structural properties and central actors not only in the official work networks and the policy networks but also in the water-use networks and the water-quality networks. Thus, public managers should diagnose and manage the relational properties among multiple stakeholders in local water sector through a network perspective. In particular, (1)co-operation between the administrative departments responsible for water-use and water-quality, and (2)information-sharing and consultation among public and private stakeholders should be improved to establish collaborative local water governance.

Rivers in Global Water Cycles

  • Oki, Taikan;Musiake, Katumi
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.S1
    • /
    • pp.11-19
    • /
    • 2000
  • The role of river in the global water cycles and the modelling the horizontal water transport by rivers in the global scale are discussed. Due to the consolidation of the various hydrological information of the planet, now it is possible to monitor and simulate the quantity of the water carried by rivers. Land surface models that were developed originally for giving the boundary condition of the atmospheric and/or climatic models can be fairly used for river runoff simulations at least monthly scale, and it is promissing the approach will be a powerful tool to investigate the future water resources management.

  • PDF

DEVELOPMENT OF A VALLEY MANAGEMENT SYSTEM FOR GIS AND REMOTE SENSING EDUCATION

  • Wu, Mu-Lin;Wong, Deng-Ching;Wang, Yu-Ming
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.570-573
    • /
    • 2006
  • College GIS and remote sensing education usually consists of commercial software packages implementations in the classroom. Computer programming is quite important when college graduates work in private or public sectors relevant with GIS and remote sensing implementations. The objective of this paper was to develop a valley management system which implements GIS and remote sensing as the key components for education. The Valley Authority is entitled with water resource protection for sustainable drinking water supply of the second largest city in Taiwan. The test area consists of three different government agencies, Forest Service, EPA, and Water Resource Agency. Materials were provided by the Valley Authority in ArcGIS file format. MapObjects have made the GIS development process much easier. Remote sensing with image manipulation functions were provided by computer programming with Visual Baisc.NET and Visual C#.NET. Attributes inquiry are performed by these two computer languages as well. ArcGIS and ArcPad are also used for simple GIS manipulations of the test area. Comparison between DIY and commercial GIS can be made by college students. Functions provided by the developed valley management system depending on how many map layers have been used and what types of MapObjects components have been used. Computer programming experience is not essential but can be helpful for a college student. The whole process is a step-by-step sequence which college students can modify to depict their capability in GIS and remote sensing. The development process has gone through one semester, three hours every week in 18 weeks. College students enrolled in this class entitled with GIS showed remarkable progresses both in GIS and remote sensing.

  • PDF

Decision Making Support System for Water Supply Facilities Planning using Geographic Information System (GIS를 이용한 상수도(上水道) 계획(計劃) 의사결정(意思決定) 지원(支援)시스템 연구(硏究))

  • Ha, Sung-Ryung;Kim, Ju-Hwan
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.3 no.2 s.6
    • /
    • pp.101-113
    • /
    • 1995
  • In pipeline planning, the systematic and reasonal management of topographical and spatial data are needed in order to omprove the availibilities for data analysis and the effective combinations of spatial informations. According to that fact, DBMS (Database Management System) and DSS(Decision making Support System) have to be developed for the planning of water supply system Also, the economic selection for harmonious delivery of water to target area, since the alternatives of pre-designed pipeline are influenced by hydraulic stability and geographic characteristics. In this study, GIS technique for water supply planning and management which stores graphic features and attributes as digital data sets is considered and engineering application programs are integrated for effective planning of water supply system. Decision making support system based on analyzing technical, Social and economical aspects is developed for the extension of water supply facilities and pipeline configurations. Especially, Hydraulic, land-use and economic influences are considered as important factors for the purpose of developing the system. Hydraulic analysis program(SAPID) for pipeline flow which is already developed in Water Resources Research Institute and economic analysis program(ECOVEL) are integrated with GIS for resonable decision making. Every possible aspects in pipeline planning for water supply is reviewed and the applicabilities of developed system into the field are evaluated.

  • PDF

A Study on Deterioration Evaluation Method by Condition Monitoring and Diagnosis for Aging Oil-immersed Power Transformers (유입식 변압기의 상태진단을 통한 노후도 평가 방법)

  • Chang, Jeong-Ho;Lee, Sung-Hun;Lee, Heung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.2
    • /
    • pp.297-305
    • /
    • 2014
  • Nowadays new water supply projects have been on the decline as the water-power constructions have saturated, which means that the existing power equipment have slowly aged and they require more efforts to maintain the system performance. An effective asset management method of power equipment has become a great necessity from both economical and technical aspects. To be balanced, the asset management should look into all three parts: management, engineering, and information. The purpose of this paper is to study a Risk-Based Maintenance (RBM) matrix method through the deterioration evaluation algorithm for an efficient reliability assessment of oil-immersed power transformers by considering both asset management and technical evaluation. Make use of this result, the equipment will be decided to be replace or repair otherwise on service.

Technical Advancements Needed for the Introduction of Distributed Water Infrastructure to Urban Wastewater Management Systems (분산형 물 인프라의 도시 하수관리 시스템 도입을 위한 기술적 발전방안)

  • Yongju Choi;Wooram Lee
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.1
    • /
    • pp.76-86
    • /
    • 2023
  • We are on the verge of paradigm shift for the design and operation of our urban water systems from treatment- and efficiency-based to recirculation- and sustainability-based. One of the most frequently suggested alternatives to embody this paradigm shift is to decentralize the currently highly centralized urban water infrastructure. However, claims for water infrastructure decentralization are often criticized due to poor economic feasibility, unstable performance, and unprofessional operation and maintenance. The current study critically reviews the literature to discuss the technical advancement needs to overcome such challenges. Firstly, decentralized water infrastructure was briefly defined and the rationale for the proposal of its introduction to the next-generation urban water systems was laid down. The main discussion focused on the following water technologies, which require special attention when working with decentralized water infrastructure: i) material collection, storage, and transport; ii) easily scalable water treatment; iii) sensor, information, and communications; and iv) system optimization. The principles, current development status, and challenges were discussed for each of the water technologies. The discussion on the water technologies has enabled the identification of future research needs for their application to the next-generation urban water systems which will be designed following decentralized water infrastructure. This paper will significantly improve the current understanding on water infrastructure decentralization and provides insight on future direction of water technology development.

AI based complex sensor application study for energy management in WTP (정수장에서의 에너지 관리를 위한 AI 기반 복합센서 적용 연구)

  • Hong, Sung-Taek;An, Sang-Byung;Kim, Kuk-Il;Sung, Min-Seok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.322-323
    • /
    • 2022
  • The most necessary thing for the optimal operation of a water purification plant is to accurately predict the pattern and amount of tap water used by consumers. The required amount of tap water should be delivered to the drain using a pump and stored, and the required flow rate should be supplied in a timely manner using the minimum amount of electrical energy. The short-term demand forecasting required from the point of view of energy optimization operation among water purification plant volume predictions has been made in consideration of seasons, major periods, and regional characteristics using time series analysis, regression analysis, and neural network algorithms. In this paper, we analyzed energy management methods through AI-based complex sensor applicability analysis such as LSTM (Long Short-Term Memory) and GRU (Gated Recurrent Units), which are types of cyclic neural networks.

  • PDF

A Study on the Fundamental Comparison of Simulation and Optimization Approaches for Water Resources Systems Planning and Management (수자원시스템의 효율적 운영을 위한 시뮬레이션과 최적화 기법의 원론적 비교 연구)

  • Kong, Jeong-Taek;Kim, Jaehee;Kim, Sheung-Kown
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.4
    • /
    • pp.373-387
    • /
    • 2013
  • For the efficient operation and management of the water resources system, coordinated operation of weirs and reservoirs is required. A simulation based, and an optimization based approaches are available to deal with the operation and management problems. The simulation based approach does not guarantee an optimal solution, and the optimization based approach is not so flexible to consider, complex, nonlinear problems we will face when trying to allocate water to different uses, various demand sectors in a basin. Hence, it is important to develop a model that would compensate for the weak points in both models. We will compare and contrast intrinsic and extrinsic properties of two modeling approaches, addressing issues related to setting system operation and control rules that would lead us to more efficient use of water in the basin. As a result, we propose to use CoWMOM(Coordinated weirs and multi-reservoir operating model), a "simulation based" optimization model for a simple simulation of the past periods, and for the real-time simulation process considering uncertain inflow.