• 제목/요약/키워드: Water Loading Effect

검색결과 348건 처리시간 0.037초

A Study on the treatment efficiency of A2O Process coupled with Mesh Screening Reactor (Mesh Screening Reactor와 결합된 A2O 공정의 처리효율에 관한 연구)

  • Whang, Gye-Dae;Lim, Dong-Min
    • Journal of Korean Society of Water and Wastewater
    • /
    • 제22권6호
    • /
    • pp.705-714
    • /
    • 2008
  • Three Mesh Screenning Reactors (MSRs) were operated in three different modes to investigate the effect of the mesh opening size and the filtrate flux on the removal of particulate matters and the production of soluble organic matters. The mesh opening size was $82{\mu}m$ (Mode 1), $61{\mu}m$ (Mode 2) and $38{\mu}m$ (Mode 3), respectively, and each mode has three different filtrate flux; $0.47m^3/m^2/d$, $0.95m^3/m^2/d$ and $1.42m^3/m^2/d$, respectively. TSS removal efficiency of mode 1, 2, and 3 fed with 191 mgTSS/L was 27%, 36%, and 60%, respectively. The SCOD concentration of 91mg/L in influent for the mode 1, 2, and 3 increased to 117 mg/L, 127 mg/L, and 155 mg/L, respectively. For the all MSRs, there was no significant effect of filtrate flux on the removal of particulate matters and the production of soluble organic matters. However, the mesh opening size greatly affected the removal of particulate matters and the production of soluble organic matters in wastewater. Three parallel A2O processes consisting of anaerobic, anoxic and aerobic reactors maintaining mixed liquor suspended solids (MLSS) of 3,000 mg/L were operated to investigate the effectiveness of MSR on the removal efficiencies of the organic matters, nitrogen, and phosphorus; MSR influent was introduced to System 1 (183 mgTSS/L, 324 mgTCOD/L, 87 mgSCOD/L, 45.2 mgTKN/L, and 6.6 mgTP/L) and MSR efluent was introduced to System 2 and 3(72 mgTSS/L, 289 mgTCOD/L, 141 mgSCOD/L, 40.2 mgTKN/L, and 4.2 mgTP/L). HRTs of the anaerobic reactors in systems 1, 2 and 3 were 1 h, 1 h and 0.6 h, respectively and anoxic reactors were 2 h in all systems. HRTs of the aerobic reactors in systems 1, 2 and 3 were 5 h, 3 h and 3 h, respectively. TSS concentration in effluent of both system 2 and 3 is about 8 mg/L and lower than that of system 1 effluent. Despite higher TCOD loading and SCOD loading, both Systems 2 and 3 had a greater TCOD and SCOD removal efficiency at 91% and 92% than System 1 was at 88% and 82%, respectively. The nitrification efficiency for system 2 was greater than observed for System 1 (99% verses 97%). The denitrification efficiency for systems 1, 2 and 3 was 78%, 88% and 87%, respectively. System 2 and 3 showed about 12% higher TN removal efficiency than system 1 (85% verses 73%). The effluent TP concentration for system 2 was less than observed for system 1 and 3.

Spatial and Temporal Variations of Water Quality in an Urban Miho Stream and Some Influences of the Tributaries on the Water Quality (청주지역의 도심하천인 미호천에서 시공간적 수질변이 특성 및 유입지천의 영향)

  • Kim, Ji-Il;Choi, Ji-Woong;An, Kwang-Guk
    • Journal of Environmental Science International
    • /
    • 제23권3호
    • /
    • pp.433-445
    • /
    • 2014
  • The objective of study was to analyze seasonal and inter-annual patterns of water chemistry of Miho Stream watershed during 2004 - 2007 along with some influences of tributaries and summer monsoon on the stream water quality. For the study, eight physico-chemical parameters such as nitrogen, phosphorus, BOD, COD and chlorophyll-a (CHL) etc. were analyzed in relation to spatial and temporal variability of seven sampling sites of the mainstream and some tributaries in the watershed. In the upstream reach, Mean of BOD, COD and TP averaged 3.2 mg/L, 6.5 mg/L and $186{\mu}g/L$, respectively, indicating an eutrophic conditions as a III-rank in the stream water quality criteria from the Ministry of Environment, Korea(MEK). The eutrophic water was due to a combined effect of Chiljang tributary with high nutrients ($TP=844{\mu}g/L$, TN=8.087 mg/L) and the point sources from some wastewater treatment plants. In the meantime, BOD, TN, and TP in the downstream reach were about > 1.2-1.5 folds than the values of the midstream reaches. This was mainly attributed to effluents of nutrient rich-water (mean TN: 11.980 mg/L) from two tributaries of Musim Stream and Suknam Stream, which is directly influenced by nearby wastewater disposal plants. Seasonal analysis of water chemistry showed that summer monsoon rainfall was one of the important factors influencing the water quality, and water quality had a large spatial heterogeneity during the rainfall period. In the premonsoon, BOD in the downstream averaged $6.0{\pm}2.47mg/L$, which was 1.4-fold greater than the mean of upstream reach. Mean of CHL-a as an indicator of primary productivity in the water body, was > 2.2 - 2.9 fold in the downstream than in the upstream, and this was a result of the high phosphorus loading from the watershed. Overall, our data suggest that some nutrient controls in point-source tributary streams are required for efficient water quality management of Miho Stream.

Analysis of Salinity Impacts on Agricultural and Urban Water Users

  • Michelsen, Ari;Sheng, Zhuping;McGuckin, Thomas;Creel, Bobby;Lacewell, Ron
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 한국수자원학회 2011년도 학술발표회
    • /
    • pp.13-13
    • /
    • 2011
  • The Rio Grande Compact Commission, in collaboration with local water management entities, water users and universities established a three state Rio Grande The Rio Grande Compact Commission, in collaboration with local water management entities, water users and universities established a three state Rio Grande Salinity Management Program. The objectives of the Rio Grande Project Salinity Management Program are to reduce salinity concentrations, loading, and salinity impacts in the Rio Grande basin for the 270 mile river reach from San Acacia, New Mexico to Fort Quitman, Texasto increase usable water supplies for agricultural, urban, and environmental purposes. The focus of this first phase of the program is the development of baseline salinity and hydrologic information and a preliminary assessment of the economic impacts of salinity. An assessment of the economic impacts of salinity in this region was conducted by scientists at Texas A&M University's AgriLife Research Center at El Paso and New Mexico State University. Economic damages attributable to high salinity of Rio Grandewater were estimated for residential, agricultural, municipal, and industrial uses. The major impact issues addressed were: who is being affected the types of economic impacts the magnitude of economic damages overall and by user category and identification of threshold-effect levels for different types of water use. Salinity concentrations in this 270 mile reach of the river typically range from 480 ppm to 1,200 ppm, but can exceed 3,000 ppm in the lower section of this reach. Economic impacts include reductions in agricultural yields, reduced water appliance life, equipment replacement costs, and increased water supply costs. This preliminary economic assessment indicates annual damages of $10.5 million from increased water salinity. Under current water uses, municipal and industrial uses account for 75% of the total estimated impacts. However, agricultural impacts are based on current crop pattern yield reductions and, salinity leaching requirements and do not account for the impacts of reduced revenue from having to grow salinity tolerant, lower value crops. Actual damages are anticipated to be significantly higher with the inclusion of these additional agricultural impacts plus the future impacts from the growing population in the region. A more comprehensive economic analysis is planned for the second phase of this program. Results of the economic analysis are being used to determine the feasiblity of salinity control alternatives and what salinity reduction control measures will be pursued.

  • PDF

A Study on Water Quality Modeling for Autochthonous BOD Effect in Namgang Dam Downstream (자생 BOD 영향에 따른 남강댐 하류부 수질모델링 연구)

  • Hwang, Soo Deok;Lee, Sung Jun;Kim, Young Do;Kwon, Jae Hyun
    • Journal of Korea Water Resources Association
    • /
    • 제46권4호
    • /
    • pp.413-424
    • /
    • 2013
  • The TMDL, the watershed-oriented water quality management policy, was introduced to inhibit the total amount of pollutant loading generation, and to develop the region environmentally friendly. However, despite the implementation of TMDL, the water quality of Nam river downstream has worsened continuously since 2005. Diverse pollution sources such as cities and industrial zone are scattered around the Nam river. Eutrophication are caused due to deterioration of water quality by low velocity. BOD concentrations in the eutrophic waters affected by the incoming BOD and the autochthonous BOD by the production of phytoplankton. In this study, the quantitative relation of incoming BOD and autochthonous BOD was analyzed for water quality management. The influence of autochthonous BOD was analyzed using QUALKO2 and QUAL2E. Considering the effects of Chl.a, BOD concentration from QUALKO2 model simulations is higher than BOD concentration from QUAL2E model. The results of QUALKO2 showed higher correlation with the measured data. Autochthonous BOD needs to be managed to solve the water pollution problem of Nam river downstream, which is looking for ways to reduce Chl.a by using the increase of the dam outflow and the improvement of the water quality from WWTP.

Effect of Psyllium Seed Husk on the Postprandial Glucose Control and Insulin Secretion Dynamics

  • Choi Hyun-Ju;Nam Jeong-Su
    • Nutritional Sciences
    • /
    • 제8권2호
    • /
    • pp.83-88
    • /
    • 2005
  • This study was to investigate the effect of psyllium seed husk (PSYL) on postprandial glucose control and insulin secretion dynamics in Sprague-Dawley rats. In experiment 1, the rise in postprandial serum glucose was monitored during a 240-min period using a maltose loading test In normal rats given 16.6 mg/l00 g B.W./ml of PSYL orally, all the blood glucose levels during the 240-min period did not show statistically significant differences from the corresponding levels in normal rats given water. However, in streptozotocin-induced diabetic rats given the same amount of PSYL, the blood glucose level at 30 min was significantly lower than that in diabetic rats given water, and the peak time of the rise in the postprandial glucose was delayed In experiment 2, the normal (N) and diabetic (Db) rats were given PSYL (25 mg/l00 g B.W./ml/day) orally for 5 days. Blood samples were collected in order to measure the s-glucose and s-insulin levels. The final s-glucose level at day 5 in Db-PSYL was significantly lower than that in the corresponding control rats (Db-CONT) and the final s-insulin level in Db-PSYL was significantly greater than that in Db-CONT. In vitro 40-min pancreas perfusion was performed at day 5 in order to examine the insulin secretion dynamics. Results showed that the amounts of insulin secreted during the first phase (11-20 min) and the second phase (21-40 min) in the Db-PSYL were significantly greater than those in Db-CONT. Therefore, it is concluded that psyllium seed husk could be beneficial for controlling postprandial glucose levels in the stretozotocin-induced diabetic rats, and it may be partially mediated by insulin secretion dynamics.

A Study on the Sulfur-Resistant Catalysts for Water Gas Shift Reaction II. Effect of Alkali Metal Salt on the Activity of CoMo Catalyst (황에 저항성을 가지는 수성가스 전환반응 촉매의 연구 II. CoMo 촉매의 활성에 미치는 알칼리 금속염의 영향)

  • Kim, Joon Hee;Lee, Ho In
    • Journal of the Korean Chemical Society
    • /
    • 제42권6호
    • /
    • pp.696-702
    • /
    • 1998
  • The effect of alkali metal salt on the activity of Co-Mo catalyst which has high resistance to sulfur poisoning for water gas shift reaction(WGSR) was studied. Two groups of catalysts were prepared to investigate the effects of anion and cation in alkali metal salts. For K-doped catalysts made with various potassium salts having different anion, the catalytic activity was explained to depend mainly on the BET surface area. Among the catalysts prepared by various nitrates of alkali metal as precursor, the Li-doped catalyst showed the best activity, and the others did not make significant differences giving relatively low activities. And the change of BET surface area by varying the loading of alkali metal showed a similar trend to that of activity. In this case, the activity was dependent on both BET surface area and the ratio of $Mo^{6+}$ with a tetrahedral coordination symmetry to $Mo^{6+}$ with an octahedral one, $Mo^6+[T]/Mo^{6+}[O]$ value.

  • PDF

Preparation of Mg(OH)2-Melamine Core-Shell Particle and Its Flame Retardant Property (멜라민이 코팅된 수산화마그네슘 입자의 제조와 그 복합입자의 난연특성)

  • Lim, Hyung-Mi;Yoon, Joon-Ho;Jeong, Sang-Ok;Lee, Dong-Jin;Lee, Seung-Ho
    • Korean Journal of Materials Research
    • /
    • 제20권12호
    • /
    • pp.691-698
    • /
    • 2010
  • Magnesium hydroxide-melamine core-shell particles were prepared through the coating of melamine monomer on the surface of magnesium hydroxide in the presence of phosphoric acid. The melamine monomer was dissolved in hot water but recrystallized on the surface of magnesium hydroxide by quenching to room temperature in the presence of phosphoric acid. The core-shell particle was applied to low-density polyethylene/ ethylene vinyl acetate (LDPE/EVA) resin by melt-compounding at $180^{\circ}C$ as flame retardant. The effect of magnesium hydroxide and melamine content has been studied on the flame retardancy of the core-shell particles in LDPE/EVA resin according to the preparation process and purity of magnesium hydroxide. Magnesium hydroxide prepared with sodium hydroxide rather than with ammonia solution revealed higher flame retardancy in core-shell particles with LDPE/EVA resin. At 50 wt% loading of flame retardant, core-shell particles revealed higher flame retardancy compared to that of the exclusive magnesium hydroxide in LDPE/EVA composite, and it was possible to satisfy the V0 grade in the UL-94 vertical test. The synergistic flame retardant effect of magnesium hydroxide and melamine core-shell particles was explained as being due to the endothermic decomposition of magnesium hydroxide and melamine, which was followed by the evolution of water from the magnesium hydroxide and porous char formation due to reactive nitrogen compounds, and carbon dioxide generated from melamine.

An Experimental Study on Effects of Density and Confining Pressure on the Elastic Modulus of Subgrade Soils (밀도와 구속압력이 노상토의 탄성계수에 미치는 영향에 관한 실험적 연구)

  • Kim, Soo Il;Kim, Moon Kyum;Yoo, Ji Hyeung;Kim, Chul Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제8권2호
    • /
    • pp.33-40
    • /
    • 1988
  • In this study, effects of the density of soil and the confining pressure applied to the soil sample on the elastic moduli of subgrade soils are experimentally analyzed. Through investigation of subgrade materials of domestic expressways, five typical types of subgrade soils are selected for the experiments. A series of unconsolidated undrained triaxial tests is performed on samples prepared with various water contents and densities at the confining pressures of 1.02, 2.04, and $3.06kg/cm^2$. Initial tangent modulus is inferred from the unloading-reloading portion of the stress strain curve obtained during an individual loading-unloading-reloading test. As a result of the analysis, it is found that the effect of the confining pressure on the elastic modulus of subgrade material is well consistent with the equation proposed by Janbu, and that the elastic modulus can be related to the dry unit weight expressing the Janbu constants as exponentiial functions of it. It is also found that the water content has little effect on the elastic modulus for the samples with the degree of saturation less than 70%.

  • PDF

Development and Application of ROADMOD for Analysis of Non-point Source Pollutions from Road: Analysis of Removal Efficiency of Sediment in Road by Sweeping (도로 비점오염 해석을 위한 ROADMOD개발 및 적용: 도로청소 효과 분석)

  • Kang, Heeman;Jeon, Ji-Hong
    • Journal of Korean Society on Water Environment
    • /
    • 제37권2호
    • /
    • pp.103-113
    • /
    • 2021
  • In this study, an Excel-based model (ROADMOD) was developed to estimate pollutant loading from the road and evaluate BMPs. ROADMOD employs the Chezy-Manning equation and empirical expression for estimating surface runoff, and power function for pollutant buildup, and exponential function for pollutant washoff in SWMM. The results of model calibration for buildup and washoff using observed data revealed a good match between the simulation results and the observed data. The long-term surface runoff and sediment simulated by ROADMOD demonstrated a good match with those by SWMM with 2 ~ 14% of relative error. The shorter sweeping interval (within 8 days) remarkably decreased sediment loads from the road. It was found that the effect of reducing sediment loads from the road was greatly affected not only by the sweeping interval but also by sweeping on the day before a rainfall event. The 48% of removal efficiency of sediment loads from the road was achieved with 26 times of road sweeping per year when sweeping was performed on the day before the rainfall event. A 4-day sweeping interval showed similar removal efficiency (48%) with 96 times of sweeping per year. It is considered that the road sweeping on the day before a rainfall event could maximize the effect of reducing the non-point source pollution from the road with minimization of the number of road sweeping. So, the road sweeping on the day before a rainfall event can be considered as one of the useful and best management practices (BMPs) on road.

Evaluation of Filter-Adsorber(F/A) Process for Removal of Disinfection By-products(DBPs) (소독부산물 제어를 위한 실공정 F/A 운영에 관한 고찰)

  • Kim, Seong-Su;Lee, Kyung-Hyuk;Lim, Jae-Lim;Chae, Seon-Ha;Kang, Byeong-Soo;Moon, Pil-Joong;Ahn, Hyo-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • 제27권10호
    • /
    • pp.1035-1042
    • /
    • 2005
  • Granular Activated Carbon(GAC) is widely used in drinking water treatment. At S and B Water Treatment Plant, GAC is used in place of granular media in conventional rapid filters(GAC Filter-Adsorber) for removal of Disinfection By-products(DBPs). The primary focus of this study is on the performance of existing filter-adsorber, and their operation. It was found that F/A process removed turbidity as effective as sand system. The ratio of Hydrophobic DOM (HPO) and hydrophilic DOM (HPI) fraction in the raw water at S and B WTP was similar. Filter Adsorber presented earlier DOC breakthrough and steady state condition which was contributed by biodegradation during operation period. The removal efficiency of DBPs were used to evaluate the filter performance. The DBPs concentration of F/A treated water was below treatment goal level (THM < $80\;{\mu}g/L$, HAA < $60{\mu}g/L$). The removal efficiency of THM decreased rapidly during operation period. However, HAA were removed steadily regardless of the influent concentration of HAA. These results indicate that the removal of THM depend upon the adsorption mechanism while the removal of HAA depend upon biodegradation as well as adsorption. The decrease of adsorption capacity and characteristic value of GAC may be attributed to the effect of high organic loading, residual free chlorine, coagulants, manganese oxidants and frequently backwashing. This study has confirmed that Filter adsorber process can be considered as effective alternatives for the removal of DBPs, especially HAA.