• 제목/요약/키워드: Water Hydraulic

검색결과 3,072건 처리시간 0.031초

대도시 급배수관망의 수압변화 특성에 관한 연구 (A Study on Hydraulic Pressure Change Characteristics of Water Distribution Networks in Large Cities)

  • 오창주;김태경;이경훈
    • 상하수도학회지
    • /
    • 제19권3호
    • /
    • pp.279-287
    • /
    • 2005
  • In this study, I suggest an effective operation of waterwork facilities in large cities and a scientific method for utilizing water in water distribution systems. To achieve this goal, my simulation were carried out on data from Kwangju City using Pipenet '98, a pipe-network program. From this simulation, I examine the possibilities of application the system in large cities, comparing data measured at 33 hydraulic pressure monitoring places from waterwork enterprises. The result is coincident with that of waterwork enterprises, with about a 12.5% average error rate and $0.32kg/cm^2$ average deviation. The method and program I use here can be helpful in cities where there is a need to extend the waterwork facilities, or where there is a need to suspend the water supply, and/or there is an accident. The simulation shows how to expand waterwork facilities effectively, how to prevent accidents, and how to estimate the hydraulic pressure even in the areas without monitoring places.

Study on Water Resources Allocation in the Lancangjiang River Basin of China

  • Ying, Gu;Heng, Liu;Jingnan, Liu;Sihua, Lei
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2006년도 학술발표회 논문집
    • /
    • pp.36-44
    • /
    • 2006
  • Based on water resources availability and development condition of the Lancang River, as well as considering the international river water resources characters, the paper put forwarded an integrated allocation way of the water resources of Lancang River Basin. According to the basic rules of equitable and suitable utilization of water resources of international rivers, water resources demand for domestic, industrial, irrigation and ecosystem system, and principles of society stabilities and the food safety etc, an index system of Lancang River water resources allocation was set up. Two levels scheme of Lancang River water allocation are proposed. First level is for an international water, which primarily to analysis the water quantity at the national boundary. Second level is for provincial water allocation among Qinghai, Yunnan provinces and Tibetan Autonomous Region. In the allocation schemes, the water resources development of Lancang River Basin at different scenarios and the related water allocation in different years and seasons were analyzed. A discharge to some cross sections of the river and a total amount water quantity for each district has been given as well.

  • PDF

Long-Term Hydraulic Conductivity and Cation Exchange of a Geosynthetic Clay Liner (GCL) Permeated with Inorganic Salt Solutions

  • Jo, Ho Young;Benson, Craig H.;Edil, Tuncer B.
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 임시총회 및 추계학술발표회
    • /
    • pp.59-62
    • /
    • 2004
  • Hydraulic conductivity tests were conducted on a geosynthetic clay liner (GCL) for more than 2.5 yr using inorganic salt solutions to evaluate how the long-term hydraulic conductivity is affected by cation concentration and valence. Only small changes (i.e., $\leq$ 2X) in hydraulic conductivity (K) occurred during the test duration when the permeant solution was deionized (DI) water or 100 mM KCl and NaCl solutions. For weak CaCl$_2$ solutions ($\leq$ 20 mM), the hydraulic conductivities initially (< 0.2 yr) were comparable to the hydraulic conductivity obtained with DI water, but gradually increased by a factor of 2 to 13 over a period of nearly 2 yr. In contrast, the GCL permeated with strong CaCl$_2$ solutions ($\geq$ 50 mM) reached equilibrium nearly immediately, with a hydraulic conductivity approximately 2 orders of magnitude higher than the hydraulic conductivity to DI water.

  • PDF

2차원 수치모형을 이용한 수공구조물 설치에 따른 수리학적 흐름 영향 평가 (Assessment for Characteristics of Flow According to Installing Hydraulic Structures by 2-D Numerical Model)

  • 최승용;남기영;한건연
    • 환경영향평가
    • /
    • 제20권6호
    • /
    • pp.797-813
    • /
    • 2011
  • Frequently occurring flood and drought due to abnormal climate and global warming have increased the necessity of an effective water resources control and management of river flows. The various hydraulic structures are constructed in river as part of an effective water resources management. It is very important to analyse characteristics of flow according to installing hydraulic structures in this situations. The objective of this study is to investigate the hydraulic behaviors of flow considering affections of hydraulic structures using 2-D numerical model. To do this, both RMA-2 model and developed RAM2 model are used to analyse flow phenomena before and after installation of hydraulic structures in Nakdong river. As a result of, the water surface elevation at upstream regions increased about 22cm~66cm and the velocity around the structures sharply increased after installation of structures. The measures for the rise of water surface at upstream and local scour due to high velocity around the structures must be established when the structures is constructed.

불포화 투수계수함수에 대한 연구 (Determination of the Unsaturated Hydraulic Conductivity Function)

  • 황창수;김태형
    • 한국지반공학회논문집
    • /
    • 제20권3호
    • /
    • pp.47-51
    • /
    • 2004
  • 불포화 투수계수함수는 흙수분 특성곡선과 함께 불포화토를 이해 연구하는데 있어서 없어서는 안 될 중요한 요소이다. 일반적으로 불포화 투수계수함수를 직접 측정하기에는 많은 어려움이 있기에, 흙수분 특성곡선에 근거한 예측함수를 사용하여 불포화 투수계수함수를 구하곤 했다. 본 연구에서는 이러한 예측함수를 사용하지 않고, 피스톤 펌프기법과 역해석 기법을 이용한 불포화 투수계수함수를 구하는 방법을 제시한다. 이렇게 구해진 불포화 투수계수함수는 예측함수를 사용하지 많았기 때문에, 흙수분 특성곡선으로부터 독립적이며 예측함수를 사용한 경우보다 보다 정확한 불포화토의 특성을 보여준다.

Effect of Intake Vortex Occurrence on the Performance of an Axial Hydraulic Turbine in Sihwa-Lake Tidal Power Plant, Korea

  • Kim, Jin-Hyuk;Heo, Man-Woong;Cha, Kyung-Hun;Kim, Kwang-Yong;Tac, Se-Wyan;Cho, Yong;Hwang, Jae-Chun;Collins, Maria
    • International Journal of Fluid Machinery and Systems
    • /
    • 제5권4호
    • /
    • pp.174-179
    • /
    • 2012
  • A numerical study to investigate the effect of intake vortex occurrence on the performance of an axial hydraulic turbine for generating tidal power energy in Sihwa-lake tidal power plant, Korea, is performed. Numerical analysis of the flow through an sxial hydraulic turbine is carried out by solving three-dimensional Reynolds-averaged Navier-Stokes dquations with the shear stress transport turbulence model. In the real turbine operation, the vortex flows are occurred in both the side corners around the intake of an axial hydraulic turbine due to the interaction between the inflow angle of water and intake structure. To analyze these vortex phenomena and to evaluate their impacts on the turbine performance, the internal flow fields of the axial hydraulic turbines with the different inflow angles are compared with their performances. As the results of numerical analysis, the vortex flows do not directly affect the turbine performance.

Numerical modeling of coupled structural and hydraulic interactions in tunnel linings

  • Shin, J.H.
    • Structural Engineering and Mechanics
    • /
    • 제29권1호
    • /
    • pp.1-16
    • /
    • 2008
  • Tunnels are generally constructed below the ground water table, which produces a long-term interaction between the tunnel lining and the surrounding geo-materials. Thus, in conjunction with tunnel design, the presence of water may require a number of considerations such as: leakage and water load. It has been reported that deterioration of a drainage system of tunnels is one of the main factors governing the long-term hydraulic and structural lining-ground interaction. Therefore, the design procedure of an underwater tunnel should address any detrimental effects associated with this interaction. In this paper an attempt to identify the coupled structural and hydraulic interaction between the lining and the ground was made using a numerical method. A main concern was given to local hindrance of flow into tunnels. Six cases of local deterioration of a drainage system were considered to investigate the effects of deterioration on tunnels. It is revealed that hindrance of flow increased pore-water pressure on the deteriorated areas, and caused detrimental effects on the lining structures. The analysis results were compared with those from fully permeable and impermeable linings.

수질모델링을 위한 하천수리특성 추정방법 개선: QualKo 모형을 중심으로 (Improvement in Stream Hydraulic Characteristics Estimation Method for Modeling Water Quality: Focusing on QualKo)

  • 한수희;신현석;김상단
    • 한국습지학회지
    • /
    • 제10권1호
    • /
    • pp.11-20
    • /
    • 2008
  • 본 연구에서는 수질모형의 적용 시 유량계수들의 적절한 추정방안을 살펴보았다. 유량계수들의 추정 시에 수리학적 유사구간의 최하류 단면을 기준으로 산정하는 것(기존의 관습적인 방법) 보다는 수리학적 유사구간 전체 단면을 고려하여 산정하는 것이 하천의 유속분포 또는 이동시간의 측면에서 보다 더 하천 유수의 흐름을 정확하게 표현할 수 있음을 알 수 있었다. 또한 어떤 특정 구간에서의 잘못된 유량계수의 추정은 수질 항목에 따라서는 해당구간 수질예측의 정확도뿐만 아니라 그 하류구간에서의 수질 예측에서도 오차가 계속 누적되는 것으로 나타남에 따라 유량계수의 산정에 보다 더 세심한 주의를 기울여야 할 것으로 판단된다.

  • PDF

일체형 하천호안블럭의 개발 및 모형실험 적용 (Invention and Hydraulic Model Test of Combined Block System in River Bank Protection)

  • 장석환;이창해;박상우
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2008년도 학술발표회 논문집
    • /
    • pp.449-453
    • /
    • 2008
  • This research focused on analyzing and comparing between the results of hydraulic physical modeling and the results of numerical modeling of Grass Concrete which is newly developed in-situ block system. The physical model was built as a scale of 1:50 by Froude similitude measuring the water levels and the water velocities for before and after vegetation and the effects were analyzed after reviewing the results. In consequence, the water velocities were observed to decrease meanly 19.1%, and the water depth were determined to increase meanly 27.8% in case of the of design flood, $Q=200m^3/sec$. Moreover, the velocities were produced reduction effects of 27.2%, and the water levels were derived from addition effects of the highest 31.3% in case of the probability maximum flood(PMF), $Q=600m^3/sec$. To verifying the hydraulic physical modeling, the numerical modeling was conducted for a close examination of before and after vegetation. HEC-RAS model was for 1 dimensional numerical analysis and RMA-2 was for 2 dimensional numerical analysis. The results of the numerical simulation, under the condition of roughness coefficient calibration, shows similar results of the physical modeling. These satisfactory results show that the accomplished results of hydraulic modeling and the predicted results of numerical modeling corresponded reasonably each others.

  • PDF

자동차 밀폐형 워터펌프의 토출구 형상이 수력성능에 미치는 영향 (Effect of Shape of Discharge Port on Hydraulic Performance of Automotive Closed Type Water Pump)

  • 허형석;이기수;배석정
    • 한국자동차공학회논문집
    • /
    • 제14권1호
    • /
    • pp.39-47
    • /
    • 2006
  • Recent trend in pursuit of high performance and effectiveness for automotive cooling system has changed the application of material for impeller of automotive water pump from metal to high ability engineering resin, which can achieve optimization of design of impeller geometry and realize lightweight high efficiency water pump. Closed type water pump improves hydraulic loss of fluid through the clearance between volute casing and impeller compared with that of the existing open type water pump(Although closed type is heavier than open type for the same size and same material, adoption of plastics can solve the problem.). In the present study, the characteristics of hydraulic performance of closed type water pump were investigated with respect to the angle between shroud and hub of impeller and the shape of discharge port of volute casing. Performance tests were carried out for 4 cases, that is, for 2 impellers and 2 casings. The modification of shape of only discharge port can enhance the hydraulic performance by 10 percent and the pump efficiency by 4-6 percent.