• 제목/요약/키워드: Water Hydraulic

검색결과 3,072건 처리시간 0.034초

라이닝-지반 수리상호작용이 해저터널에 미치는 영향 (Effect of hydraulic lining-ground interaction on subsea tunnels)

  • 신종호;박동인;주은정
    • 한국터널지하공간학회 논문집
    • /
    • 제10권1호
    • /
    • pp.49-57
    • /
    • 2008
  • 라이닝 작용수압과 유입량은 지하수 수위 아래 혹은 하 해저터널 설계시 중요하게 고려되어야할 수리요소이다. 이 요소들은 수심, 심도, 수리경계조건의 영향을 받는다. 본 논문에서는 각 설계요소가 라이닝하중과 유입량에 미치는 영향을 수치해석적 도구를 이용하여 살펴보았다. 수심영향해석은 심도 30 m에 건설된 마제형 터널에 대하여 수심과 라이닝/지반 상대투수계수 비를 다양하게 변화시켜 조사하였고, 심도영향 해석은 수심 60 m의 터널에 대하여 심도 및 라이닝/지반 상대투수계수 비를 변화시켜 해석하였다. 해석결과 수리경계조건과 상관없이 수심 및 심도가 증가함에 따라 지반하중이 증가하였다. 이는 배수터널은 침투력의 영향으로, 비배수 터널은 정수압의 영향으로 수두가 증가함에 따라 지반하중이 증가함을 보여준 것이다. 수심, 심도의 증가에 따라 유입량은 선형적으로 증가하였으며, 라이닝/지반 상대투수계수비와 유입량관계는 펼쳐진 S자 곡선(stretched S-curve)형태로 나타남을 확인하였다.

  • PDF

시공조건이 시멘트계 고화토의 투수계수에 미치는 영향 (Effects of Some Construction Variables on the Hydraulic Conductivity of Soil-Cement in Low Permeable Applications)

  • 정문경;김강석;우제윤
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 가을 학술발표회 논문집
    • /
    • pp.427-434
    • /
    • 2000
  • Hydraulic conductivity of soil-cement was measured as a function of some selected construction variables that are often encountered in practice. They are initial (or compaction) water content, delayed compaction after mixing, and repeated freezing and thawing. Sandy and clayey soils were used. The hardening agent used was a cement based soil stabilizer consisting of 80% of ordinary Portland cement and 20% of a combination of supplementary materials. Hydraulic conductivity of soil-cement with varying initial water content was, in trend, similar to that of compacted clay. Hydraulic conductivity of soil-cement decreased with increasing initial water content and reached its minimum when compacted wet of optimum water content. Pore size distributions of soil cement at different initial water contents were analyzed using mercury intrusion porosimetry. The analysis showed that dryer condition led to the formation of larger pores with lesser total pore volume; smaller pores with larger total pore volume at wetter condition. Hydraulic conductivity of soil-cement increased by orders in magnitude when specimen underwent delayed compaction of longer than 4 hours after mixing and repeated freezing and thawing.

  • PDF

Correlating the hydraulic conductivities of GCLs with some properties of bentonites

  • Oren, A. Hakan;Aksoy, Yeliz Yukselen;Onal, Okan;Demirkiran, Havva
    • Geomechanics and Engineering
    • /
    • 제15권5호
    • /
    • pp.1091-1100
    • /
    • 2018
  • In this study, the relationships between hydraulic conductivity of GCLs and physico-chemical properties of bentonites were assessed. In addition to four factory manufactured GCLs, six artificially prepared GCLs (AP-GCLs) were tested. AP-GCLs were prepared in the laboratory without bonding or stitching. A total of 20 hydraulic conductivity tests were conducted using flexible wall permeameters ten of which were permeated with distilled deionized water (DIW) and the rest were permeated with tap water (TW). The hydraulic conductivity of GCLs and AP-GCLs were between $5.2{\times}10^{-10}cm/s$ and $3.0{\times}10^{-9}cm/s$. The hydraulic conductivities of all GCLs to DIW were very similar to that of GCLs to TW. Then, simple regression analyses were conducted between hydraulic conductivity and physicochemical properties of bentonite. The best correlation coefficient was achieved when hydraulic conductivity was related with clay content (R=0.85). Liquid limit and plasticity index were other independent variables that have good correlation coefficients with hydraulic conductivity (R~0.80). The correlation coefficient with swell index is less than other parameters, but still fairly good (R~0.70). In contrast, hydraulic conductivity had poor correlation coefficients with specific surface area (SSA), smectite content and cation exchange capacity (CEC) (i.e., R < 0.5). Furthermore, some post-test properties of bentonite such as final height and final water content were correlated with the hydraulic conductivity as well. The hydraulic conductivity of GCLs had fairly good correlation coefficients with either final height or final water content. However, those of AP-GCLs had poor correlations with these variables on account of fiber free characteristics.

Flow-3D를 활용한 수질정화체가 설치된 농업용 배수로의 안정성 조사 (Investigation of the Hydraulic Stability of Agricultural Drainage Channels Installed Water Purification Materials by using Flow-3D)

  • 김선주;박기춘
    • 한국농공학회논문집
    • /
    • 제49권5호
    • /
    • pp.3-9
    • /
    • 2007
  • In this study, the effect of the purification materials is analyzed and tested by Flow 3D and Hydraulic model test. Three dimension numerical analysis led from the research that sees abnormal form and the size back of the water purification material conferred the flowing water conduct inside the test channel against the test condition. Comparison it analyzed the flux distribution, a water depth of the channel which establishes the water purification materials the cross section, an interval of the water purification material, a conference with general channel, it change executed. As a result, the cross section ratio of the purification materials against and a flux change from the test which it sees. The interval of the purification materials in order to prevent three dimension that follows in decrease of increase and flux must decide an interval.