• Title/Summary/Keyword: Water Hammer

Search Result 165, Processing Time 0.02 seconds

A study on the relationship between Schmidt Hammer's 'R' and bedrock microforms (기반암 하상 미지형과 슈미트 해머 반발 값과의 관계에 대한 연구)

  • KIM, Jong Yeon
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.3
    • /
    • pp.51-69
    • /
    • 2012
  • Physical strength of the rock is the most important factor of resistance to erosion and has been measured through various way. Bedrock microforms, like potholes and grooves, are the forms sculpted by the erosional processes of flow and the location and morphology are strongly affected by the differential erosion. It also assumed that the physical strength of the rock controls the erosion rate and mode of erosion. The schmidt hammer has been used to measure the rock strength in the field for the geomorphological research. To find the relationship between the rock strength and microforms, Schmidt hammer's R(rebound) were measured in the Baeksuktan, middle reach of Gilancheon, Cheongsong, Gyungsangbuk do. The overall values of rebound of the local sandstone showed over 65 in most cases, so it can be regarded as 'very strong'. It is found that the rebound values of the rock surface decreased towards current water level. It also, however, found that there was no systematic differences in rebound values among the topographically high and lows in the bedrock surface. There was no statistically significant difference in rebound values of the area with well developed microforms and others. The values of R from the exposed faces and inside of the microforms are similar. In the case of conglomerate, the part with the gravel showed higher values that the parts with sands. The rebound values are decreased near of(<1cm) the geological discontinuities(including joint and faults), so this line of weakness could be the point of initiation of active erosion to form microforms. However there is large variations in rebound values within this part. It also should be mentioned that topological relation between the strike of the geologic discontinuities and flow direction looks control the mode of erosional processes.

A Study of Measuring Vibration for Reproducing Waterhammer of Plant Equipment (플랜트 기자재 수충격 진동재현을 위한 진동측정에 관한 연구)

  • OH, Jung-Soo;Cho, Sueng-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.145-150
    • /
    • 2017
  • In this study, among the various types of plant equipment, valves, which are susceptible to water hammer, were selected as the diagnosis target. In order to effectively measure the vibration, an accelerometer was adapted for use in this difficult environment. The results showed that the maximum peak-to-peak vibration displacement caused by the action of water hammer on the valve was 21.40 mm, which would affect the structural stability of the valve and pipe. Meanwhile, the measured data was applied to the HIL simulator to verify the reproduction of the vibration. In the future, field data will be applied to the HIL simulator for the purpose of assessing the fatigue, durability and expected residual life of the plant equipment.

Effect of geological characteristics on differential weathering of low-graded metasedimentary rock slopes (저변성퇴적암 사면에서 지질특성이 차별풍화에 미치는 영향)

  • Jeong, Hae-Geun;Seo, Yong-Seok;Ihm, Myung-Hyeok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.4
    • /
    • pp.375-385
    • /
    • 2013
  • This study evaluates correlation between petrographic characteristics and weathering grade of low-graded metasedimentary rocks mainly consisting of phyllite. Weathering grade of rock material was determined based on the results of geological survey. The Schmidt hammer test was carried out to obtain estimates of strength of rock materials. Point counting and microscopic observation were also conducted to analyze mineral composition and to measure spacing of foliation for 9 rock specimens. As a result of microscopic analysis, as the weathering grade was lower, the quartz was found more in quantity, consequently making rock stronger against weathering process. On the other side, lower weathering grade of rock resulted in less content of mica which is weak against weathering process. In addition, the rock materials with closer foliation spacing are found to be weaker in strength and have higher weathering grade.

A Study of Design factors for Increasing Energy Production in Small Hydro power with Using Long Pipe (장대관로를 이용한 소수력 발전량 향상을 위한 설계요소에 관한 연구)

  • Kim, Hyun-Han;Kim, Kwang-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.8
    • /
    • pp.1134-1139
    • /
    • 2014
  • Recently the need for renewable energy development is expanding due to the global climate change, the environmental issues and the limited fossil energy resources. Dependence of energy on overseas is high in Korea. To resolve the environmental problems and to improve the energy independence rate, the development of renewable energy is more required. The small hydro power, one of the renewable energy resources, has been developing and operating from a long time ago. If we are new developing a small hydro power with the use existing dams and reservoirs, we will design the length of inlet pipe and the diameter suitable for it. However, in case of using the existing water supply pipe which had been designed suitable for water service, the designer has to review and check that the pipe is suitable for operating a generator. In this paper, the design of small hydro power using the existing long pipe of water supply, we suggest the optimum way to reduce the water hammer in pipe which causes the unsteady flow during the load-shutdown of generator, the generator operation plan for the stable supply of water and the design factor of determining the generator capacity through the analysis between discharge and head-loss.

Methodology for optimum design of surge relief valve in water distribution system (상수관망에서 서지 릴리프밸브의 최적 설계 방법론)

  • Kim, Hyunjun;Hur, Jisung;Kim, Geonji;Baek, Dawon;Kim, Sanghyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • Surge pressure is created by rapid change of flow rate due to operation of hydraulic component or accident of pipeline. Proper control of surge pressure in distribution system is important because it can damage pipeline and may have the potential to degrade water quality by pipe leakage due to surge pressure. Surge relief valve(SRV) is one of the most widely used devices and it is important to determine proper parameters for SRV's installation and operation. In this research, determining optimum parameters affecting performance of the SRV were investigated. We proposed the methodology for finding combination of parameters for best performance of the SRV. Therefore, the objective function for evaluate fitness of candidate parameters and surge pressure simulation software was developed to validate proposed parameters for SRV. The developed software was integrated into genetic algorithm(GA) to find best combination of parameters.

The Analysis of Fluid Pressure in Polybutylene Piping System (PB 배관에서의 유체압력에 관한 연구)

  • Lee Yong-Hwa
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.1
    • /
    • pp.17-23
    • /
    • 2006
  • This study is to investigate the pressure wave characteristics and the maximum pressure rise generated by instantaneous valve closure at the end of the straightening polybutylene piping system. Experiments were conducted under the following conditions: initial pressure $1\~5$ bar, flow velocity $\~0.5-3.0m/s$ and water temperature $25^{\circ}C$. Results indicated that the peak pressure generated by quick valve closure reached Joukowsky's value. We also found that the maximum pressure rise and the pressure history depended on not only initial steady pressure but also flow velocity.

Conceptual Safety Design Analyses of Korea Advanced Liquid Metal Reactor

  • Suk, S.D.;Park, C.K.
    • Nuclear Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.66-82
    • /
    • 1999
  • The national long-term R&D program, updated in 1997, requires Korea Atomic Energy Research Institute(KAERI) to complete by the year 2006 the basic design of Korea Advanced Liquid Metal Reactor(KALIMER), along with supporting R&D work, with the capability of resolving the issue of spent fuel storage as well as with significantly enhanced safety. KALIMER is a 150 MWe pool-type sodium cooled prototype reactor that uses metallic fuel. The conceptual design is currently under way to establish a self-consistent design meeting a set of major safety design requirements for accident prevention. Some of the current emphasis includes those for inherent and passive means of negative reactivity insertion and decay heat removal, high shutdown reliability, prevention of and protection from sodium chemical reaction, and high seismic margin, among others. All of these requirements affect the reactor design significantly and involve extensive supporting R&D programs. This paper summarizes some of the results of conceptual engineering and design analyses performed for the safety of HAMMER in the area of inherent safety, passive decay heat removal, sodium water reaction, and seismic isolation.

  • PDF

A Case Study of Caisson Typed Bridge-Foundation Fabrication and Installation in Ul-san Newport Breakwater Project (케이슨식 교량기초 제작 및 거치 시공사례 -울산 신항 방파제현장 시공 사례를 중심으로-)

  • JANG BYUNG-SOO;SIN SUNG-GWEN;KIM DUCK-HO
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.45-50
    • /
    • 2004
  • The method of caisson typed bridge-foundation fabrication and installation applied in Ul-san newport breakwater project is throughly carried out to compact QRR mound vibro-hammer step by step to minimize settlement through stability check. Floating Dock was mobilized for caisson fabrication due to limited site area. fabricated caisson on the Floating Dock was towed to the deeper area of 8m water depth to be launched, and Floating Crane assisted launching and installation work of the caisson. finally water filling was done followed by surveying work to permanent installation.

  • PDF

Design Consideration about Large Caliber Piping of Polyethylene Material (폴리에틸렌 소재의 대구경 배관 설계 고찰)

  • Kim, Eung-Soo;Yoon, Myong-O
    • Fire Science and Engineering
    • /
    • v.27 no.6
    • /
    • pp.44-49
    • /
    • 2013
  • As the polyethylene of high strength and ductility stabilized chemically has been mass-produced, it is spreading widely as material of industrial piping and water service piping. Recently, High density polyethylene (HDPE) pipe has been used even in water supply system of plant as buried pipe instead of cast iron pipe in domestic, but HDPE pipe has a probability of occurrence of damage if plant design and operating conditions are not considered. As a result of reviewing with respect of system design engineering based on operating conditions and verification test results, the specific design criteria for the use of HDPE piping in fire water supply system need to be established because of the possibility of crack damage due to water hammer.

Impulse response method for a centrifugal pump in pipeline systems (원심펌프 관로계에 대한 임펄스 응답법 적용 연구)

  • Hur, Jisung;Kim, Hyunjoon;Song, Yongsuk;Kim, Sanghyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.5
    • /
    • pp.481-489
    • /
    • 2016
  • Method of characteristic(MOC) has been widely used as a transient analysis technique for pressurized pipeline systems. There are substantial studies using MOC for the water hammer triggered through instantaneous valve closures, pump stoppage and pump startup for pipelines systems equipped with a centrifugal pump. Considering restrictions of MOC associated with courant number condition for complicated pipeline systems, an impulse response method(IRM) was developed in the frequency domain. this study implements the impact of centrifugal pump using transfer function in frequency domain approach. Using pump performance curve and the affinity law, this study formulated transfer functions which relate complex pressure head at upstream of pump system to that of downstream location. Simulations of simple reservoir-pump-valve system using IRM with formulated transfer function were similar to those obtained through MOC.