• Title/Summary/Keyword: Water Dew Point

Search Result 60, Processing Time 0.032 seconds

Calculation of the Hydrocarbon and Water Dew points of Natural Gas (천연가스의 탄화수소 및 물 이슬점 계산)

  • Ha, Youngcheol;Lee, Seongmin;Her, Jaeyoung;Lee, Kangjin;Lee, Seunjun
    • Korean Chemical Engineering Research
    • /
    • v.47 no.5
    • /
    • pp.565-571
    • /
    • 2009
  • This study was conducted to evaluate hydrocarbon and water dew points of natural gas. For this purpose, algorithm of suppressing divergence was devised to evaluate hydrocarbon dew point up to near critical point and algorithm for finding water dew points lower than that of hydrocarbon, which cannot be calculated by commercial dew point program, was developed. The evaluated values were compared to commercial program and ISO reference values, and the results showed that deviations were zero.

Electrical Measurement of SOx Dew Point (SOx노점의 전기적 측정)

  • Chun, Y.N.;Yong, K.J.;Chae, J.O.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.4
    • /
    • pp.600-610
    • /
    • 1995
  • When combustion gas is cooled down below the dew point of sulfuric acid vapor in the heat recovery systems, condensation occurs. Since the condensed sulfuric acid solution causes low-temperature corrosion in materials, it is important to measure the SOx dew point by electric measurement. In this study, two kinds of probes having electric gaps of 1mm or 2mm were used. and experiments were carried out by the parameters of sulfuric acid vapor and water vapor concentration. The changes of electric current caused by sulfuric acid condensed on the surface of probe according to the cooling rate and the probe head surface temperature were sudied. The opimum cooling rate was decreased with the increasing of water vaper concentration regardless of sulfuric acid concentration. The sensitivity of electric current is improved for the narrower gap(1mm) of ring electrodes, but it rarely affects the SOx dew point measuring of different probes according to the change of cooling rate.

  • PDF

Analysis of Meteorological Features and Prediction Probability Associated with the Fog Occurrence at Chuncheon (춘천의 안개발생과 관련된 기상특성분석 및 수치모의)

  • Lee Hwa Woon;Lee Kwi Ok;Baek Seung-Joo;Kim Dong Hyeok
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.3
    • /
    • pp.303-313
    • /
    • 2005
  • In this study, meteorological characteristics concerning the occurrence of fog are analyzed using 4-years $(2000\~2003)$ data at Chuncheon and the probability of prediction is investigated. From the analysis of meteorological characteristics, the fog at Chuncheon occurred before sunrise time and disappeared after that time and lasted for $2\~4$ hours. When fog occurred, on the whole, wind direction was blew the northerly and wind speed was below 2.1m/s. Especially, about $42\%$ of foggy day fell on the calm $(0\~0.2\;ms^{-1})$ conditions. The difference between air temperature and dew point temperature near the surface were mainly less than $2^{\circ}C$. For the lack of water surface temperature, the water surface temperature was calculated by using Water Quality River Reservoir System (WQRRS) and then it was used as the surface boundary condition of MM5. The numerical experiment was carried out for 2 days from 1300 LST on 14 October 2003 to 1300 LST on 16 October 2003 and fog was simulated at dawn on 15 and 16 October 2003. Simulated air temperature and dew point temperature indicate the similar tendency to observation and the simulated difference between air temperature and dew point temperature has also the similar tendency within $2^{\circ}C$. Thus, the occurrence of fog is well simulated in the terms of the difference between air temperature and dew point temperature. Horizontal distribution of the difference between air temperature and dew point temperature from the numerical experiment indicates occurrence, dissipation and lasting time of fog at Chuncheon. In Chuncheon, there is close correlation between the frequency of fog day and outflow from Soyang reservoir and high frequency of occurrence due to the difference between air and cold outlet water temperature.

A Study on the Effects of System Pressure on Heat and Mass Transfer Rates of an Air Cooler

  • Jung, Hyung-Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.696-702
    • /
    • 2002
  • In the present paper, the effects of inlet pressure on the heat and mass transfer rates of an air cooler are numerically predicted by a local analysis method. The pressures of the moist air vary from 2 to 4 bars. The psychrometric properties such as dew point temperature, relative humidity and humidity ratio are employed to treat the condensing water vapor in the moist air when the surface temperatures are dropped below the dew point. The effects of the inlet pressures on the heat transfer rate, the dew point temperature, the rate of condensed water, the outlet temperature of air and cooling water are calculated. The condensation process of water vapor is discussed in detail. The results of present calculations are compared with the test data and shows good agreements.

Assessment of Leak Detection Capability of CANDU 6 Annulus Gas System Using Moisture Injection Tests

  • Nho, Ki-Man;Kim, Wang-Bae;Sim, Woo-Gun
    • Nuclear Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.403-415
    • /
    • 1998
  • The CANDU 6 reactor assembly consists of an array of 380 pressure tubes, which are installed horizontally in a large cylindrical vessel, the Calandria, containing the low pressure heavy water moderator. The pressure tube is located inside the calandria tube and the annulus between these tubes, which forms a closed loop with $CO_2$ gas recirculating, is called the Annulus Gas System(AGS). It is designed to give an alarm to the operator even for a small pressure tube leak by a very sensitive dew point meter so that he can take a preventive action for the pressure tube rupture incident. To judge whether the operator action time is enough or not in the design of Wolsong 2,3 & 4, the Leak Before Break(LBB) assessment is required for the analysis of the pressure tube failure accident. In order to provide the required data for the LBB assessment of Wolsong Units 2, 3, 4, a series of leak detection capability tests was performed by injecting controlled rates of heavy water vapour. The data of increased dew point and rates of rise were measured to determine the alarm set point for the dew point rate of rise of Wolsong Unit 2. It was found that the response of the dew point depends on the moisture injection rate, $CO_2$ gas flow rate and the leak location. The test showed that CANDU 6 AGS can detect the very small leaks less than few g/hr and dew point rate of rise alarm can be the most reliable alarm signal to warn the operator. Considering the present results, the first response time of dew point to the AGS $CO_2$ flow rate is approximated.

  • PDF

The Effect of Temperature on Aluminum Oxide and Chilled Mirror Dew-point Hygrometers (산화 알루미늄 및 냉각거울 노점계의 온도 의존성에 관한 연구)

  • Kim, Jong Chul;Choi, Byung Il;Woo, Sang-Bong;Kim, Yong-Gyoo;Lee, Sang-Wook
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.50-55
    • /
    • 2017
  • The measurement of absolute humidity of gases is essential in many industries. The effect of temperature on aluminum oxide and chilled mirror dew-point hygrometers is investigated. The temperature of laboratory, pipe line, and sensor is varied and the dew point is measured by two different aluminum oxide hygrometers. In all cases, the dew point of hygrometers is increased as the temperature is elevated. The reason behind this observation is due to desorption of water from the inside of pipe line and/or sensor surroundings at elevated temperature that result in the increase of the absolute humidity. Moreover, the sensor itself shows a certain degree of temperature dependency in sensing the humidity especially at low temperature. It is also studied that chilled mirror dew-point hygrometer may indicate a higher dew point than the reference at high temperature because the cooling capability of mirror is decreased at high temperature. Our study will provide evidences in the incorporation of the temperature effect as uncertainty factors in the standard calibration procedure for dew point hygrometers.

Earth Science Prospective Teachers' Perceptions on the Relationship between Absolute Humidity and Dew Point Temperature (절대 습도와 이슬점 온도의 관계에 대한 지구과학 예비 교사들의 인식)

  • Kang, So Ra;Seo, Eun-Kyoung;Kim, Dong Young
    • Journal of the Korean earth science society
    • /
    • v.40 no.6
    • /
    • pp.624-638
    • /
    • 2019
  • A questionnaire was administered, and all responses were analyzed to examine prospective teachers' conceptual understanding of the relationship between dew point temperature and absolute humidity in air parcels. The responses revealed that many prospective teachers have substantial misconceptions about the relationship. For example, some thought that the absolute humidity and the dew point temperature are proportional to each other, and that the dew point temperature is proportional to the water vapor mass in the parcel. The misconceptions seemingly stemmed from inadequate descriptions on the relationship in middle-school science textbooks of the 7th and 2007 revised curricula. The study notes that the first year students' textbook of the 2015 revised curriculum introduced the concepts of evaporation, condensation, and volume changes as a function of gaseous pressure and temperature, from a perspective of molecular motion. It is suggested that keeping this perspective in the middle school curriculum, while introducing water vapor pressure as the measure of water vapor amount and dew point temperature, should help prevent middle school teachers and students from having misconceptions. There should be a concerted effort to make the science curriculum more consistent and coherent across the grade levels.

Influence of the Water Vapor Content on the Hydrogen Reduction Process of Nanocrystalline NiO

  • Jung, Sung-Soo;An, Hyo-Sang;Lee, Jai-Sung
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.4
    • /
    • pp.315-319
    • /
    • 2010
  • In this study, the hydrogen reduction behavior of ball-milled NiO nanopowder was investigated depending on the partial pressure of water vapor. The hydrogen reduction behavior was analyzed by thermogravimetry and hygrometry under heating to 873 K in hydrogen. In order to change the partial pressure of the water vapor, the dew point of hydrogen was controlled in the range of 248 K~293 K by passing high-purity hydrogen through a saturator that contained water. Interestingly, with the increase in the dew point of the hydrogen atmosphere, the first step of the hydrogen reduction process decreased and the second step gradually increased. After the first step, a pore volume analysis revealed that the pore size distribution in the condition with a higher water vapor pressure shifted to a larger size, whereas the opposite appearedat a lower pressure. Thus, it was found that the decrease in the pore volume during the chemical reaction controlled process at a dew point of 248 K caused a reduction in retardation in the diffusion controlled process.

Water Vapor Supply Study for Air and Carbon dioxide (공기와 이산화탄소 가스에 수분공급을 위한 연구)

  • Lee, Taeck Hong;Park, Tae Seong;Kim, Tae Wan;Noh, Jae Hyun;Kang, Young Jin;Lee, Seung Yong
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.1
    • /
    • pp.72-78
    • /
    • 2014
  • The study has been designed to develop water vapor supply for semiconductor industry, industrial gas manufacturing, impurities analysis, and fuel cell. Water concentration in air reached $1019{\mu}mol/mol$ at dew temp ($-20^{\circ}C$) and water concentration in CO2 reached $127{\mu}mol/mol$ at dew temp ($-40^{\circ}C$. Carbon dioxide needs more wet gas than air because interaction potential of carbon dioxide shows more strong attraction than air.

Analysis of Water Transport through Measurement of Temperature and Relative Humidity in PEMFC at OCV (개방회로 상태 PEMFC 내부 온도와 습도 측정을 통한 수분투과 분석)

  • KIM, TAEHYEONG;HAN, JAESU;YU, SANGSEOK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.4
    • /
    • pp.353-362
    • /
    • 2022
  • In this study, water diffusion in proton exchange membrane fuel cell at open circuit voltage (OCV) was analyzed through experiment. First, the reliability of the micro-sensor (SHT31) was verified. It was concluded the micro-sensor has an excellent reliability at 60℃ and 70℃. After the sensor reliability test, the temperature and relative humidity measurement in bipolar-plate was conducted at OCV. To analyze water distribution and water flux, the temperature and relative humidity was converted into dew point. To the end, it was found water concentration affects water diffusion.