• Title/Summary/Keyword: Water Depth

Search Result 4,736, Processing Time 0.028 seconds

Feeding Behavior of Black-faced Spoonbills Platalea minor on Rice Paddy in Gangwha Island, Korea (강화도 논에서 저어새(Platalea minor)의 섭식행동)

  • Yoo, Sung-Yeon;Kwon, In-Ki;Yoo, Jeong-Chil
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.2
    • /
    • pp.168-177
    • /
    • 2019
  • This study was conducted to examine the impact of various environmental factors on the feeding behavior of black-faced spoonbills Platalea minor known to use rice fields during the breeding season. We surveyed the rice fields three times a month from April to June 2017 and from April to June 2018. We counted the number of black-faced spoonbills and measured the environmental factors such as the water depth, paddy type by cultivation stage, and biomass of potential prey that are expected to affect black-faced spoonbills. We also filmed the feeding behavior of black-faced spoonbills to examine differences in feeding behavior by environmental factors. The survey showed that the number of black-faced spoonbills reached its peak from late April to late May which was the breeding period. Among a total of 308 black-faced spoonbills observed, 86.4% (n=266) were observed feeding on rice paddies, 90.6% (n=279) were adults, and none was observed on dry paddies. The biomass of rice paddy increased significantly since May when fish started hatching, and there was a significant difference in the amount of biomass between the rice paddies where black-faced spoonbills were observed and other rice paddies. The analysis of the feeding behavior of black-faced spoonbills showed that the feeding efficiency and feeding success rate of black-faced spoonbills increased significantly when the amount of biomass soared and that the number of steps of black-faced spoonbills per minute increased greatly after rice planting was completed. The number of bill sweeping was not related to the feeding efficiency, feeding success rate, and paddy type by cultivation stage.

Theoretical and experimental studies on influence of electrode variations in electrical resistivity survey for tunnel ahead prediction (터널 굴착면 전방조사를 위한 전기비저항 탐사에서 전극의 변화가 미치는 영향에 대한 이론 및 실험연구)

  • Hong, Chang-Ho;Chong, Song-Hun;Hong, Eun-Soo;Cho, Gye-Chun;Kwon, Tae-Hyuk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.2
    • /
    • pp.267-278
    • /
    • 2019
  • Variety of tunnel ahead prediction methods have been performed for safe tunnel construction during tunnel excavation. Pole-pole array among the electrical resistivity survey, which is one of the tunnel ahead prediction method, has been utilized to predict water-bearing sediments or weak zone located within 5 times of tunnel diameter. One of the most important processes is the estimation of virgin ground resistivity and it can be obtained from the following process: 1) calculation of contact area between the electrodes and the medium, and 2) assumption of the electrodes as equivalent spherical electrodes which have a same surface area with the electrodes. This assumption is valid in a small contact area and sufficient distance between the electrodes. Since the measured resistance, in general, varies with the electrode size, shape, and distance between the electrodes, it is necessary to evaluate the influence of these factors. In this study, theoretical equations were derived and experimental tests were conducted considering the electrode size, shape, and distance of cylindrical electrodes which is the most commonly utilized electrode shape. Through this theoretical and experimental study, it is known that one should be careful to use the assumption of the equivalent half-spherical electrode with large ratio between the penetrated depth and radius of the cylindrical electrode, as the error may get larger.

Evaluation of Soil Disturbance Due to Bucket Installation in Sand (모래지반에서 버켓기초 설치에 의한 지반교란 평가)

  • Kim, Jae-Hyun;Lee, Seung-Tae;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.11
    • /
    • pp.21-31
    • /
    • 2018
  • Bucket foundations are widely used in offshore areas due to their various benefits such as easy and fast installations. A bucket is installed using self-weight and the hydraulic pressure difference across the lid generated by pumping out water from inside the bucket. When buckets are installed in high permeable soil such as sands, upward seepage flow occurs around the bucket tip and interior, leading to a decrease in the effective stress in the soil inside the buckets. This process reduces the penetration resistance of buckets. However, the soil inside and outside the bucket can be disturbed due to the upward seepage flow and this can change the soil properties around the bucket. Moreover, upward seepage flow can create significant soil plug heave, thereby hindering the penetration of the bucket to the target depth. Despite of these problems, soil disturbance and soil plug heave created by suction installation are not well understood. This study aims to investigate the behavior of soil during suction installation. To comprehend the phenomena of soil plug heave during installation, a series of small-scale model tests were conducted with different testing conditions. From a series of tests, the effects of tip thickness of bucket, penetration rate, and self-weight were identified. Finally, soil properties inside the bucket after installation were approximated from the measured soil plug heave.

Determination of Location and Depth for Groundwater Monitoring Wells Around Nuclear Facility (원자력이용시설 주변의 지하수 감시공의 위치와 심도 선정)

  • Park, Kyung-Woo;Kwon, Jang-Soon;Ji, Sung-Hoon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.2
    • /
    • pp.245-261
    • /
    • 2019
  • Radioactive contaminant from a nuclear facility moves to the ecosystem by run-off or groundwater flow. Among the two mechanisms, contaminant plume through a river can be easily detected through a surface water monitoring system, but radioactive contaminant transport in groundwater is difficult to monitor because of lack of information on flow path. To understand the contaminant flow in groundwater, understanding of the geo-environment is needed. We suggest a method to decide on monitoring location and points around an imaginary nuclear facility by using the results of site characterization in the study area. To decide the location of a monitoring well, groundwater flow modeling around the study area was conducted. The results show that, taking account of groundwater flow direction, the monitoring well should be located at the downstream area. Also, monitoring sections in the monitoring well were selected, points at which groundwater moves fast through the flow path. The method suggested in the study will be widely used to detect potential groundwater contamination in the field of oil storage caverns, pollution by agricultural use, as well as nuclear use facilities including nuclear power plants.

Edge Enhancement for Vessel Bottom Image Considering the Color Characteristics of Underwater Images (수중영상의 색상특성을 고려한 선박하부 영상의 윤곽선 강조 기법)

  • Choi, Hyun-Jun;Yang, Won-Jae;Kim, Bu-Ki
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.7
    • /
    • pp.926-932
    • /
    • 2017
  • Image distortion can occur when photographing deep sea targets with an optical camera. This problem arises because sunlight is not sufficiently transmitted due to seawater and various floating particles of dust. Particularly, color distortion takes place, causing green and blue color channels to be over emphasized due to water depth, while distortion of boundaries also occurs due to light refraction by seawater and floating particles of dust. These distortions degrade the overall quality of underwater images. In this paper, we analyze underwater images of the bottom of vessels. Based on the results, we propose a technique for color correction and edge enhancement. Experimental results show that the proposed method increases edge clarity by 3.39 % compared to the effective edges of the original underwater image. In addition, a quantitative evaluation and subjective image quality evaluation were concurrently performed. As a result, it was confirmed that object boundaries became clear with color correction. The color correction and contour enhancement method proposed in this paper can be applied in various fields requiring underwater imaging in the future.

Distribution of the Firefly Squid, Watasenia scintillans Larvae in the Southern part of the East Sea during Summer and Autum (하계와 추계 동해 남부연안의 매오징어 (Watasenia scintillans) 유생출현양상)

  • KIM, Yoon-Ha;SHIN, Dong-Hoon;LEE, Jeong-Hoon;KWON, Dae-Hyun;KANG, Su-Kyung;HWANG, Kang-Seok;CHA, Hyung-Kee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.7
    • /
    • pp.902-908
    • /
    • 2017
  • To determine the horizontal and temporal distribution of firefly squid, Watasenia scintillans (W. scintillans), larvae, we conducted surveys using IKMT (mesh size: $500{\mu}m$) and CTD (SBE9plus) with Fisheries Research Vessel (FRV, TAMGU 21) in the southern part of the East Sea in summer (August) and autumn (September and November) 2015. A total of 238 larvae, ranging in mantle length (ML) from 0.6 mm to 18.5 mm, were collected at 28 stations. Abundance and larval distribution density were significantly higher in summer than in autumn during the study period. Especially, the highest density of W. scintillans was observed in the coastal waters of the East Sea from Pohang to Pyunghae where cold water masses were distributed in summer. Optimum embryo survival temperature ($6-16^{\circ}C$) 40 to 180 m depth ranges for stations which larvae were collected.

A Business Model for Offshore Integrated Drilling Commissioning in Korea and Related Economic Analysis (우리나라 해양시추설비 통합시운전 사업 모델의 개발 및 경제성 분석에 관한 연구)

  • Lee, Chang-Woo;Cheon, Young-Wook;Shin, Sang-Hoon;Shin, Yong-John
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.1
    • /
    • pp.102-110
    • /
    • 2019
  • The shipbuilding and offshore plant industry of Korea is important and leads Korea's economic growth, designated as the 1st to 4th export items in Korea in terms of export contribution over the period from 2011 to 2015. This study proposes ways to improve the national competitiveness of Korean shipyards in the global offshore drilling market by reviewing a business model for providing an integrated offshore drilling commissioning service in Korea. This commissioning service model, which was attempted in 2014, was reviewed, and a new proposed business model for overcoming the limitations of the previous model and activating further business was evaluated. As a result of an economic evaluation, it was found that a 150-meter water depth model is economically more effective. As the number of integrated commissions increased from 2 to 5 times per year, NPV, IRR and B/C ratios increased and the fee per use decreased. Therefore, for offshore drilling facilities constructed and delivered in Korea, it will be necessary to encourage integrated offshore commissioning.

CO and Soot Yields of Wood Combustibles for a Kitchen Fire Simulation (주방 화재시뮬레이션을 위한 목재 가연물의 CO 및 Soot Yields)

  • Mun, Sun-Yeo;Hwang, Cheol-Hong;Kim, Sung-Chan
    • Fire Science and Engineering
    • /
    • v.33 no.1
    • /
    • pp.76-84
    • /
    • 2019
  • Experimental studies using an open cone calorimeter were conducted to provide information on the CO and soot yields of wood combustibles required for a kitchen fire simulation of PBD. A total of eight specimens were examined for medium density fiberboard (MDF) and particle board (PB), which are used widely in kitchen furniture production, depending on the water content, surface processing method, and surface color. The thermal penetration time related to the fire spread rate in the depth direction differed significantly according to the surface processing treatment method, even for a specimen of identical thickness. The CO yield ($y_{CO}$) of the MDF and PB series did not change significantly according to the combustion mode and surface treatment process in flaming mode. On the other hand, $y_{CO}$ was approximately 10 times higher in smoldering mode than in flaming mode. The soot yield ($y_{soot}$), however, varied considerably depending on the combustion mode and surface treatment process. In particular, a higher $y_{soot}$ was found in flaming mode and in the surface-treated specimens. Finally, the $y_{CO}$ and $y_{soot}$ of MDF and PB measured for the kitchen fire simulation of PBD were applied.

A study on the estimation of wind noise level using the measured wind-speed data in the coastal area of the East Sea (동해 연안에서 관측된 풍속자료를 이용한 바람소음준위 추정 연구)

  • Park, Jisung;Kang, Donghyug;Kim, Mira;Cho, Sungho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.4
    • /
    • pp.378-386
    • /
    • 2019
  • Unlike ship noise that radiates from moving ships, wind noise is caused by breaking waves as a result of the interaction between the wind and the sea surface. In this paper, WNL (Wind Noise Level) was modeled by considering the noise source of the wind as the bubble cloud generated by the breaking waves. In the modeling, SL( Source Level) of the wind noise was calculated using the wind-speed data measured from the weather buoy operated in the coastal area of the East Sea. At the same time as observing the wind speed, NL (Noise Level) was continuously measured using a self-recording hydrophone deployed near the weather buoy. The modeled WNL according to the wind speed and the measured NL removing the shipping noise from the acoustic raw data were compared in the low-frequency band. The overall trends between the modeled WNL and the measured NL were similar to each other. Therefore, it was confirmed that it is possible to model the WNL in the shallow water considering the SL and distribution depth of bubble cloud caused by the wind.

An Influence Analysis on the Gap Space of an Engineered Barrier for an HLW Repository (고준위폐기물처분장 공학적방벽의 갭 공간이 미치는 영향 분석)

  • Yoon, Seok;Lee, Changsoo;Kim, Min-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.4
    • /
    • pp.19-26
    • /
    • 2021
  • The high-level radioactive waste (HLW) produced from nuclear power plants is disposed in a rock-mass at a depth of hundreds meters below the ground level. Since HLW is very dangerous to human being, it must be disposed of safely by the engineered barrier system (EBS). The EBS consists of a disposal canister, backfill material, buffer material, and so on. When the components of EBS are installed, gaps inevitably exist not only between the rock-mass and buffer material but also between the canister and buffer material. The gap can reduce water-retarding capacity and heat release efficiency of the buffer material, so it is necessary to investigate properties of gap-filling materials and to analyze gap spacing effect. Furthermore, there has been few researches considering domestic disposal system compared to overseas researches. In this reason, this research derived the peak temperature of the bentonite buffer material considering domestic disposal system based on the numerical analysis. The gap between the canister and buffer material had a minor effect on the peak temperature of the bentonite buffer material, but there was 40% difference of the peak temperature of the bentonite buffer material because of the gap existence between the buffer material and rock mass.