• Title/Summary/Keyword: Water Cycle

Search Result 2,159, Processing Time 0.034 seconds

Study on the optimum operation system of Sequencing Batch Reactor (연속 회분식 반응조의 최적 운전시스템에 관한 연구)

  • Eom, Tae Kyu;Ko, Eun Joo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.4
    • /
    • pp.54-61
    • /
    • 1999
  • SBR process used to evaluate the removal of organics, nitrogen and phosphorus on the basis of a report of research on a precedence at various operation cycle and condition change. Effluent concentration of COD were 50mg/l, 50mg/l, 90mg/l respectively, The removal rates of COD were nearly over 95% at Run 1, 2 and 4. But at Run 3, Effluent concentration of COD was 255.0mg/l, The removal rate of COD was 87% at Run 3. As Oxic/Anoxic rate was fixed and operating cycle of Oxic/Anoxic was changed, the removal rates of T-N were 74.7%, 46.9%, 28.5%, 63.3% respectively at Run 1~4. The case of Run 1 was best result. The removal rates of T-P was appeared in proportion to T-N removal rates and rest of $NO_2-N$. The removal rates of T-P were 51.2%, 35.5%, 41.5%, 51.9% respectively. The removal rates of COD, T-N, T-P were influenced on the change of SBR operation cycle. As organic loading rate was $1.43kgCOD/m^3day$ and C/N ratio was 3.0, operation cycle of Run 1 was best condition of T-N removal rates and T-P removal.

  • PDF

Optimization of Heat Transfer Area Distribution for a Hot Water Driven Absorption Chiller (중온수 흡수식 냉동기의 열전달 면적 최적화)

  • 정시영;조광운;이상수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.5
    • /
    • pp.431-438
    • /
    • 2000
  • The major irreversibilities in absorption chillers are associated with the transfer of heat into and out from the machine and irreversible process inside the machine. By modeling only external irreversibilities(endo-reversible), a model was formulated to predict the ideal performance of a single-effect absorption chiller. Its actual performance including both external and internal irreversibilities was calculated with a in-house simulation program. The optimization of heat transfer area distribution was performed for both endo-reversible cycle and actual cycle. The equation of endo-reversible modeling was found to give about 2times higher cooling capacity than the simulation program. At optimal distribution, it was found that heat transfer area of the evaporator was about 30% of total area, that of the generator was 20%, and the rest 50% was for the absorber and condenser. The system COP for endo-reversible cycle was slightly higher than that for actual cycle. In the case of LiBr-water single-effect absorption chiller, the maximum cooling capacity was obtained near the condition that LMTD is same at all heat exchangers.

  • PDF

Reproductive Cycle of the Ark Shell, Scapharca subcrenata, on the West Coast of Korea

  • Kwun Sun-Man;Chung Ee-Yung
    • Fisheries and Aquatic Sciences
    • /
    • v.2 no.2
    • /
    • pp.142-148
    • /
    • 1999
  • Monthly changes in the gonad index (GI), egg-diameter composition, gonadal development, reproductive cycle of the ark shell, Scapharca subcrenata, were investigated by histological method and morphometric data. This species is dioecious and oviparous. The gonad is located among the subregion of mid-intestinal gland, digestive diverticula and the outer fibromuscular layers compacted by the fibrous connective tissues and muscle fibers. The gonad index sharply increased in May, reached the maximum value in June, and then gradually decreased from July to December. The reproductive cycle of this species can be divided into six successive stages: early active stage (January to May), late active stage (June to July), ripe stage (June to August), partially spawned stage (July to September), degenerative stage (August to December), and resting stage (January to April). S. subcrenata spawns once a year between July and early September, and the main spawning occurred between July and August when the water temperatures were above $20^{\circ}C$. This evidence suggest that timings of maturation and spawning are closely related to water temperatures. Even though the spawning period was once a year, it is assumed that the number of spawning frequencies (broods) may occur more than twice during the spawning season.

  • PDF

A Heat Exchanging Characteristics of Organic Rankine Cycle for Waste Heat Recovery of Coal Fired Power Plant (화력발전용 복수기 폐열 회수를 위한 유기랭킨사이클 시스템 열교환 특성 해석)

  • Jeong, Jinhee;Im, Seokyeon;Kim, Beomjoo;Yu, Sangseok
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.1
    • /
    • pp.64-70
    • /
    • 2015
  • Organic Rankine cycle (ORC) is an useful cycle for power generation system with low temperature heat sources ($80{\sim}400^{\circ}C$). Since the boiling point of operating fluid is low, the system is used to recover the low temperature heat source of waste heat energy. In this study, a ORC with R134a is applied to recover the waste energy of condenser of coal fired power plant. A system model is developed via Thermolib$^{(R)}$ under Simulink/MATLAB environment. The model is composed of a refrigerant heat exchanger for heat recovery from coal fired condenser, a drum, turbine, heat exchanger for ORC heat rejection, storage tank, water recirculation pump and water drip pump. System analysis parameters were heat recovery capacity, type of refrigerants, and types of turbines. The simulation model is used to analyze the heat recovery capacity of ORC power system. As a result, increasing the overall heat transfer coefficient to become the largest of turbine power is the most economical.

A Study on Operation Cycle of SBR for the Treatment of Distillery Wastewater (주정폐수 처리를 위한 SBR 운전주기에 관한 연구)

  • Choi, Yoo Hyun;Eom, Han Ki;Kim, Sung Chul;Joo, Hyun Jong
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.2
    • /
    • pp.191-196
    • /
    • 2016
  • This study aimed to evaluate SBR operation cycle for removing the high-concentration organic matter of distillery wastewater in the ginseng processing plant. The experiment was conducted with the use of a laboratory scale SBR reactor and distillery wastewater as the influent. The results indicated an increase in pH from 4.08 to 7.59 of distillery wastewater after aeration for 2 hours. Also, the optimum SBR operation cycle for the removal of organic matter and nitrogen was 2 hr of aeration and 6 hr of anaerobic conditions. Adjustment of proper pH through aeration time is most critical in the SBR operation for distillery wastewater treatment. In this study, we presented an efficient method for distillery wastewater treatment.

AM600: A New Look at the Nuclear Steam Cycle

  • Field, Robert M.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.3
    • /
    • pp.621-631
    • /
    • 2017
  • Many developing countries considering the introduction of nuclear power find that large-scale reactor plants in the range of 1,000 MWe to 1,600 MWe are not grid appropriate for their current circumstance. By contrast, small modular reactors are generally too small to make significant contributions toward rapidly growing electricity demand and to date have not been demonstrated. This paper proposes a radically simplified re-design for the nuclear steam cycle for a medium-sized reactor plant in the range of 600 MWe. Historically, balance of plant designs for units of this size have emphasized reliability and efficiency. It will be demonstrated here that advances over the past 50 years in component design, materials, and fabrication techniques allow both of these goals to be met with a less complex design. A disciplined approach to reduce component count will result in substantial benefits in the life cycle cost of the units. Specifically, fabrication, transportation, construction, operations, and maintenance costs and expenses can all see significant reductions. In addition, the design described here can also be expected to significantly reduce both construction duration and operational requirements for maintenance and inspections.

Analysis on the Water Footprint of Crystalline Silicon PV System (결정질 실리콘 태양광시스템의 물 발자국 산정에 대한 연구)

  • Na, Won-Cheol;Kim, Younghwan;Kim, Kyung Nam;Lee, Kwan-Young
    • Clean Technology
    • /
    • v.20 no.4
    • /
    • pp.449-456
    • /
    • 2014
  • There has been increasing concerns for the problems of water security in countries, caused by the frequent occurrence of localized drought due to the climate change and uncertainty of water balance. The importance of fresh water is emphasized as considerable amount of usable fresh water is utilized for power generation sector producing electricity. PV power system, the source of renewable energy, consumes water for the every steps of life cycle: manufacturing, installation, and operation. However, it uses relatively less water than the traditional energy sources such as thermal power and nuclear power sources. In this study, to find out the use of water for the entire process of PV power system from extracting raw materials to operating the system, the footprint of water in the whole process is measured to be analyzed. Measuring the result, the PV water footprint of value chain was $0.989m^3/MWh$ and the water footprint appeared higher specially in poly-Si and solar cell process. The following two reasons explain it: poly-Si process is energy-intensive process and it consumes lots of cooling water. In solar cell process, deionized water is used considerably for washing a high-efficiency crystalline silicon. It is identified that PV system is the source using less water than traditional ones, which has a critical value in saving water. In discussing the future energy policy, it is vital to introduce the concept of water footprint as a supplementary value of renewable energy.

Preliminary Design of the Supercritical $CO_2$ Brayton Cycle Energy Conversion System (초임계 이산화탄소 Brayton 에너지 전환계통 예비설계)

  • Cha, Jae-Eun;Eoh, Jae-Hyuk;Lee, Tae-Ho;Sung, Sung-Hwan;Kim, Tae-Woo;Kim, Seong-O;Kim, Dong-Eok;Kim, Moo-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3181-3188
    • /
    • 2008
  • The supercritical $CO_2$ Brayton cycle energy conversion system is presented as a promising alternative to the present Rankine cycle. The principal advantage of the S-$CO_2$ gas is a good efficiency at a modest temperature and a compact size of its components. The S-$CO_2$ Brayton cycle coupled to a SFR also excludes the possibilities of a SWR (Sodium-Water Reaction) which is a major safety-related event, so that the safety of a SFR can be improved. KAERI is conducting a feasibility study for the supercritical carbon dioxide (S-$CO_2$) Brayton cycle power conversion system coupled to KALIMER(Korea Advanced LIquid MEtal Reactor). The purpose of this research is to develop S-$CO_2$ Brayton cycle energy conversion systems and evaluate their performance when they are coupled to advanced nuclear reactor concepts of the type under investigation in the Generation IV Nuclear Energy Systems. This paper contains the research overview of the S-$CO_2$ Brayton cycle coupled to KALIMER-600 as an alternative energy conversion system.

  • PDF

A Study on Regenerative OTEC System using the Condenser Effluent of Uljin Nuclear Power Plant (울진 원자력발전소 온배수를 이용한 재생식 해양온도차발전에 대한 연구)

  • Kang, Yun-Young;Park, Sung-Seek;Park, Yun-Beom;Kim, Nam-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.7
    • /
    • pp.591-597
    • /
    • 2012
  • For the past few years, the concern for clean energy has been greatly increased. Ocean thermal Energy Conversion(OTEC) power plants are studied as a viable option for the supply of clean energy. In this study, we examined the thermodynamic performance of the OTEC power system for the production of electric power. Computer simulation programs were developed under the same condition and various working fluids for closed Rankine cycle, regenerative cycle, Kalina cycle, open cycle, and hybrid cycle. The results show that the regenerative cycle showed the best system efficiency. And then we examined the thermodynamic performance of regenerative cycle OTEC power system using the condenser effluent from Uljin nuclear power plant instead of the surface water. The highest system efficiency of the condition was 4.55% and the highest net power was 181 MW.

DYNAMIC MODELING AND ANALYSIS OF ALTERNATIVE FUEL CYCLE SCENARIOS IN KOREA

  • Jeong, Chang-Joon;Choi, Hang-Bok
    • Nuclear Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.85-94
    • /
    • 2007
  • The Korean nuclear fuel cycle was modeled by the dynamic analysis method, which was applied to the once-through and alternative fuel cycles. First, the once-through fuel cycle was analyzed based on the Korean nuclear power plant construction plan up to 2015 and a postulated nuclear demand growth rate of zero after 2015. Second, alternative fuel cycles including the direct use of spent pressurized water reactor fuel in Canada deuterium uranium reactors (DUPIC), a sodium-cooled fast reactor and an accelerator driven system were assessed and the results were compared with those of the once-through fuel cycle. The once-through fuel cycle calculation showed that the nuclear power demand would be 25 GWe and the amount of the spent fuel will be ${\sim}65000$ tons by 2100. The alternative fuel cycle analyses showed that the spent fuel inventory could be reduced by more than 30% and 90% through the DUPIC and fast reactor fuel cycles, respectively, when compared with the once-through fuel cycle. The results of this study indicate that both spent fuel and uranium resources can be effectively managed if alternative reactor systems are timely implemented along with the existing reactors.