• Title/Summary/Keyword: Water Cycle

Search Result 2,164, Processing Time 0.03 seconds

Technology Selection for Offshore Underwater Small Modular Reactors

  • Shirvan, Koroush;Ballinger, Ronald;Buongiorno, Jacopo;Forsberg, Charles;Kazimi, Mujid;Todreas, Neil
    • Nuclear Engineering and Technology
    • /
    • v.48 no.6
    • /
    • pp.1303-1314
    • /
    • 2016
  • This work examines the most viable nuclear technology options for future underwater designs that would meet high safety standards as well as good economic potential, for construction in the 2030-2040 timeframe. The top five concepts selected from a survey of 13 nuclear technologies were compared to a small modular pressurized water reactor (PWR) designed with a conventional layout. In order of smallest to largest primary system size where the reactor and all safety systems are contained, the top five designs were: (1) a lead-bismuth fast reactor based on the Russian SVBR-100; (2) a novel organic cooled reactor; (3) an innovative superheated water reactor; (4) a boiling water reactor based on Toshiba's LSBWR; and (5) an integral PWR featuring compact steam generators. A similar study on potential attractive power cycles was also performed. A condensing and recompression supercritical $CO_2$ cycle and a compact steam Rankine cycle were designed. It was found that the hull size required by the reactor, safety systems and power cycle can be significantly reduced (50-80%) with the top five designs compared to the conventional PWR. Based on the qualitative economic consideration, the organic cooled reactor and boiling water reactor designs are expected to be the most cost effective options.

Application of PCSWMM for the Analysis of Water Quantity and Quality Considering CSOs (CSOs를 고려한 도시유역의 수량 및 수질 분석을 위한 PCSWMM 모형의 적용)

  • Hong, Won-Pyo;Chung, Eun-Sung;Lee, Joon-Seok;Kim, Kyung-Tae;Lee, Kil Seong
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.1
    • /
    • pp.26-36
    • /
    • 2009
  • Combined sewer system (CSS) has been built in the most urban areas across the nation. During dry weather conditions, CSS works fine. But during heavy rain storms, combined sewage frequently overflows into the stream. This study simulated the hydrologic cycle and pollutant loads (BOD, SS, TN and TP) in the Mokgamcheon watershed considering combined sewer overflows (CSOs). PC storm water management model (PCSWMM) was used for continuous simulation and CSOs are considered using the flow divider. Sensitivity analysis, calibration and verification for water quantity and quality are carried out. To verify CSOs, field measurements of CSOs are compared with simulated results. As a result, 41.3% of precipitation flows into the stream directly and 1.1% of water supply flows into stream as CSOs. 6.5% of BOD total loads, 12.0% of SS, 13.6% of TP, and 29.2% of TN are from CSOs. This result will be effective to the integrated watershed management for sustainability.

A Learning Progression for Water Cycle from Fourth to Sixth Graders with Ordered Multiple-Choice Items (순위 정렬 선다형 평가 문항을 적용한 초등학교 4~6학년 학생들의 물의 순환에 대한 학습 발달 과정)

  • Seong, Yeonseon;Maeng, Seungho;Jang, Shinho
    • Journal of Korean Elementary Science Education
    • /
    • v.32 no.2
    • /
    • pp.139-158
    • /
    • 2013
  • This study investigated elementary students' (grade 4~6) learning progressions for water cycling drawn from iterative assessments using ordered multiple-choice (OMC) items. An assessment system, which consisted of construct map, item design, outcome space, and measurement model, was employed in this study to examine children's learning progressions. At the first stage of the assessment system, a construct map was designed on which children's conceptual understandings from naive to most sophisticated were represented. At the item design stage, 8 OMC items were drawn from the construct map. Each item option of the OMC items was scored from 0 to 3 according to its level of understanding at the stage of outcome space. As a measurement model, Rasch model, a branch of item response theory, was applied to interpreting the outcomes of the OMC items. This cycle of assessment system was furtherly implemented iteratively in order to elaborate on the first version of water cycling learning progression. In conclusion, children's understanding of water cycling could be described in two aspects: water distribution and water movement. We identified children's conjectural developmental pathways about water cycling existed from superficial and naive accounts to more complex and abstract accounts.

Application of water control by high fiux MF membrane (고 플럭스 MF막의 정수처리 실용화에 관한 연구)

  • Yong, Hwang-Sang
    • Journal of environmental and Sanitary engineering
    • /
    • v.23 no.2
    • /
    • pp.55-63
    • /
    • 2008
  • All over the world, the existing process of water purification needs more flocculants and chlorine due to a gradual decline in the quality of source water. Therefore, the problem of the remaining aluminium and DBPs in purified water is on the rise. To solve this problem, the process of membrane filter has recently come into the spotight. This study reaches the following conclusions concerning TMP variation in order to solve the dropping of flux throgh a membrane filter when operating a membrane filter system in the process of water purification. 1. In case that a cohesion-precipitation process was introduced to pre-treatment of a membrane filter, initial TMP was very satisfactory(0.27kg/cm) in producing the constantly safe quality of water, $0.04{\sim}0.1$(mean 0.05) NTU by pouring 2mg/l of PACI(10% $Al_2O_3$) used for the existing process of water purification in high-density turbidity at a dry or flood season and at occurrence of high algae. 2. As flux increased at 0.5m/day.m, TMP increased 0.05 kgf/cm. 3. As filtering, operation mode of PVDF MF membrane filtering was 48 minutes and 1 cycle of back washing was 42 minutes, flux was increased 1.5m/day.m and TMP increased $0.25{\sim}0.27kgf/cm$. Without back washing, TMP increased 0.03 kgf/cm per a cycle.

Development of Low-Cycle Fatigue Test Rig in Simulated PWR Environments (PWR환경을 모사한 저주기 피로실험장치 국산화)

  • Jeong, I.S.;Kim, S.J.;Lee, Y.S.;Hong, S.Y.
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.178-183
    • /
    • 2004
  • For developing fatigue design curve of cast stainless steels that would be used in piping material of domestic nuclear power plants, a low-cycle fatigue test rig was built. It is capable of performing tests in pressurized high temperature water environment of PWR. Cylindrical specimens of CF8M were used for the strain-controlled environmental fatigue tests. Fatigue life was measured in terms of the number of cycles with the variation of strain amplitude at 0.04%/s strain rates. The disparity between target length and measured length of specimens was corrected by using finite element method. The corrected test results showed similar fatigue life trend with another previous results.

  • PDF

The thermal cycle degration of MEA in PEMFC under cold start condition (냉시동 환경에서 thermal cycle이 FEMFC의 MEA 열화에 미치는 영향)

  • Rhee, Jun-Kee;Seo, Dong-Ho;Jeon, Yu-Kwon;Shul, Yong-Gun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.412-414
    • /
    • 2009
  • In recent times, starting up polymer electrolyte membrane fuel cells(PEMFC) in sub-zero condition is a great challenge of fuel cell electric vehicle(FCEV). The water produced in a cathode during PEMFCs operate. The water changes into the form of solid/ice in sub-zero temperatures and this makes trouble in PEMFC cells. Voltage of PEMFC drops and cold startup is failed. This paper describes an experimental study on the effect of thermal cycle to degradation of MEA in PEMFC.

  • PDF

A Modification of SWMM for a Groundwater Pumping Simulation (지하수 양수 모의를 위한 SWMM의 수정)

  • Lee, Sang-Ho;Lee, Jung-Min
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.628-635
    • /
    • 2007
  • As the hydrologic cycle is transformed by the expansion of impermeable area as a result of the urbanization, the function of an ecosystem is deteriorated by the transformed hydrologic cycle. In this study, a SWMM code was modified to have a groundwater pumping option about rivers-aquifer interaction to be possible. The modified SWMM was applied to continuous simulations of urban runoff from Hakuicheon watershed and it was used to analyse the effect of a groundwater pumping. The modified SWMM overcame the limitation of the ground subroutine that it only simulate groundwater inflow from ground to rivers. The result of continuous simulation of groundwater pumping is that surface runoff, groundwater runoff and groundwater level are well simulated, and Modified SWMM expressed groundwater runoff by negative number (-) when groundwater level is less than river stage.

Environmental Impact Assessment of Wastewater Treatment Plant Using Life Cycle Assessment (LCA기법을 이용한 하수처리장의 환경영향 평가)

  • Park, Kwang-Ho;Hwang, Yong-Woo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.6
    • /
    • pp.809-818
    • /
    • 2005
  • Comprehensive environmental impact of wastewater treatment plant (WWTP) was evaluated with life cycle assessment (LCA) methodology based on ISO 14040. As environmental impact assessment method, Eco-indicator 95 and Eco-indicator 99 were used. The studied WWTP had a capacity of $100,000m^3/d$, and its life span of civil structure and main machinery was designed to 40 years and 20 years, respectively. As the results, more than 95% of environmental impact was produced by using electricity and chemical use in operation stage. In construction stage, temporary shoring facility was the major reason of environmental load, however, its impact was much less than those by operation utilities.

Process Evaluation in Preparing Oil in Water Microemulsion by Dynamic Light Scattering Method (Dynamic Light Scattering Method를 이용한 수중유형 Microemulsion의 제조조건 평가)

  • Min, Shin-Hong;Yang, Joong-Ik;Kwon, Jong-Won;Jeong, Dae-Sik;Jeong, Yeoub
    • Journal of Pharmaceutical Investigation
    • /
    • v.17 no.1
    • /
    • pp.41-46
    • /
    • 1987
  • Oil in water microemulsion containing soybean oil and egg phosphatide was prepared by vacuum high shear mixing and high pressure homogenizing. The laser particle sizer, Coulter counter and photomicroscope were used to determine the particle size distribution at each cycle of homogenizing. Particularly, the laser particle sizer(dynamic light scattering method) was applied to the study of particle size distribution behavior below $1\;{\mu}m$. It was found that the particle size distribution below $1\;{\mu}m$ was shifted to lower size range as the number of passing cycle was increased. Beyond the 7th cycle, however, the particle size distribution was not varied.

  • PDF

The ROK Nuclear Power Programme -Some Aspects of Radioactive Waste Management in the Nuclear Fuel Cycle-

  • West, P.J.
    • Nuclear Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.194-213
    • /
    • 1980
  • The paper describes and quantifies the wastes arising in the nuclear fuel cycle for Light Water Reactors, Heavy Water Reactors and Fast Breeder Reactors. The management and disposal technologies are indicated, together with their environmental impacts. Both once-through and uranium-plutonium recycle systems are evaluated, and comparisons are made on the basis of tingle reference technologies for waste management, and for one gigawatt/year of electricity generation. Environmental impacts are assessed, particularly that of health and safety, and a reference costing system is applied purely as a basis for comparing the fuel cycles. From this study it call be concluded generally that the relative differences of the impacts of waste management and disposal between the selected fuel cycles are not decisive factors in choosing a fuel cycle. Employing the technologies assumed, the radioactive wastes from any of the fuel cycles studied can be managed and disposed of with a high degree of safety and without undue risk to man or the environment. The cost of waste management and disposal is only a few percent of the value of the electricity generated and does not vary greatly between fuel cycles.

  • PDF