• Title/Summary/Keyword: Water Cycle

Search Result 2,159, Processing Time 0.034 seconds

Heating Performance Characteristics of Heat Pump with VI cycle using Re-Heater and Solar-Assisted (태양열과 재열기를 사용한 VI heat pump의 성능 특성에 관한 연구)

  • Lee, Jin-Kook;Choi, Kwang-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.6
    • /
    • pp.25-33
    • /
    • 2015
  • In this study, heating performance of the air-cooled heat pump with vapor-injection (VI) cycles, re-heater and solar heat storage tank was investigated experimentally. Devices used in the experiment were comprised of a VI compressor, re-heater, economizer, variable evaporator, flat-plate solar collector for hot water, thermal storage tank, etc. As working fluid, refrigerant R410A for heat pump and propylene glycol (PG) for solar collector were used. In this experiment, heating performance was compared by three cycles, A, B and C. In case of Cycle B, heat exchange was conducted between VI suction refrigerant and inlet refrigerant of condenser by re-heater (Re-heater in Fig. 3, No. 3) (Cycle B), and Cycle A was not use re-heater on the same operating conditions. In case of Cycle C, outlet refrigerant from evaporator go to thermal storage tank for getting a thermal energy from solar thermal storage tank while re-heater also used. As a result, Cycle C reached the target temperature of water in a shorter time than Cycle B and Cycle A. In addition, it was founded that, as for the coefficient of heating performance($COP_h$), the performance in Cycle C was improved by 13.6% higher than the performance of Cycle B shown the average $COP_h$ of 3.0 and by 18.9% higher than the performance of Cycle A shown the average $COP_h$ of 2.86. From this results, It was confirmed that the performance of heat pump system with refrigerant re-heater and VI cycle can be improved by applying solar thermal energy as an auxiliary heat source.

Development and application of cellular automata-based urban inundation and water cycle model CAW (셀룰러 오토마타 기반 도시침수 및 물순환 해석 모형 CAW의 개발 및 적용)

  • Lee, Songhee;Choi, Hyeonjin;Woo, Hyuna;Kim, Minyoung;Lee, Eunhyung;Kim, Sanghyun;Noh, Seong Jin
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.3
    • /
    • pp.165-179
    • /
    • 2024
  • It is crucial to have a comprehensive understanding of inundation and water cycle in urban areas for mitigating flood risks and sustainable water resources management. In this study, we developed a Cellular Automata-based integrated Water cycle model (CAW). A comparative analysis with physics-based and conventional cellular automata-based models was performed in an urban watershed in Portland, USA, to evaluate the adequacy of spatiotemporal inundation simulation in the context of a high-resolution setup. A high similarity was found in the maximum inundation maps by CAW and Weighted Cellular Automata 2 Dimension (WCA2D) model presumably due to the same diffuse wave assumption, showing an average Root-Mean-Square-Error (RMSE) value of 1.3 cm and high scores of binary pattern indices (HR 0.91, FAR 0.02, CSI 0.90). Furthermore, through multiple simulation experiments estimating the effects of land cover and soil conditions on inundation and infiltration, as the impermeability rate increased by 41%, the infiltration decreased by 54% (4.16 mm/m2) while the maximum inundation depth increased by 10% (2.19 mm/m2). It was expected that high-resolution integrated inundation and water cycle analysis considering various land cover and soil conditions in urban areas would be feasible using CAW.

Scalants removal from synthetic RO brine using natural zeolite (막증류 공정의 전처리 공정으로서 천연 제올라이트 컬럼 적용)

  • Jeong, Seongpil;Chung, Hayoon;Yoon, Teakgeun;Lee, Seockheon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.3
    • /
    • pp.279-284
    • /
    • 2016
  • Membrane distillation (MD) is the thermally driven water separation process based on the vapor pressure difference across the membrane. In order to increase the water recovery of the conventional RO process, the additional MD-PRO pocess was suggested. In this study, the syntheric RO brine was used as a feed solution of the MD process. Due to the high salinity of the RO brine, the MD membrane could be fouled by the scalants. In order to mitigate the scaling on the MD membrane surface, the pre-treatment process using the column filled by natural zeolite was applied. The roughing filter was installed between the pre-treatment process and MD system in order to prevent possible particulate fouling by the debries of the natural zeolite. Moreover, in order to enhance the CEC of the natural zeolite, the NaCl soaking was conducted. The flux and electronic conductivity were monitored under given experimental conditions. And the membrane morphology and the chemical compositions were analyzed by using the SEM-EDX.

Basic Static Characteristics of a Closed and a Regeneration Cycles for the OTEC System (해양온도차발전 Closed and Regeneration Cycle의 기본 정특성)

  • Cha, Sang-Won;Kim, You-Taek;Mo, Jang-Oh;Lim, Tae-Woo;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.8
    • /
    • pp.1151-1157
    • /
    • 2012
  • Ocean Thermal Energy Conversion(OTEC) technology is one of the new and renewable energy that utilizes the natural temperature gradient that exists in the tropical ocean between warm surface water and the deep cold water, to generate electricity. The selection of working fluid and the OTEC cycle greatly influence the effect on the system operation, and it's energy efficiency and impacts on the environment. Working fluids of the OTEC are ammonia, R22, R407C, and R410A. In this paper, we compared boiling pressure to optimize OTEC system at $25^{\circ}C$. Also, this paper showed net-power and efficiency according to working fluids for closed cycle and regeneration cycle.

Analysis of Wetness/Dryness in Geum River Basin based on Climatic Water Balance (기후학적 물수지에 의한 금강유역의 습윤/건조 상태 분석)

  • Kim, Joo Cheol;Lee, Sang Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.2
    • /
    • pp.243-251
    • /
    • 2010
  • Evapotranspiration and rainfall-runoff are the major components of hydrological cycle and thereby the changes of them can directly affect the wetness/dryness or runoff characteristics of basins. In this study the wetness/dryness in Geum river basin are classified by dint of cumulative probability density function of monthly moisture index and the long term changes of them are analyzed based on climatic water balance concept. The drought events in Geum river basin are selected through evaluation of monthly moisture index and the various hydrological properties of them are investigated in detail. Also the trends of time-series of climatic water balance components are examined by Seasonal Kendall test and the variability of hydrological cycle in Geum river basin during the recent decade is inquired. It is judged that the results of this study can be contributed to establishment of the counter plan against the future drought events as the fundamental information.

A Study of the Valid Model(Kernel Regression) of Main Feed-Water for Turbine Cycle (주급수 유량의 유효 모델(커널 회귀)에 대한 연구)

  • Yang, Hac-Jin;Kim, Seong-Kun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.663-670
    • /
    • 2019
  • Corrective thermal performance analysis is required for power plants' turbine cycles to determine the performance status of the cycle and improve the economic operation of the power plant. We developed a sectional classification method for the main feed-water flow to make precise corrections for the performance analysis based on the Performance Test Code (PTC) of the American Society of Mechanical Engineers (ASME). The method was developed for the estimation of the turbine cycle performance in a classified section. The classification is based on feature identification of the correlation status of the main feed-water flow measurements. We also developed predictive algorithms for the corrected main feed-water through a Kernel Regression (KR) model for each classified feature area. The method was compared with estimation using an Artificial Neural Network (ANN). The feature classification and predictive model provided more practical and reliable methods for the corrective thermal performance analysis of a turbine cycle.

Climate changes impact on water resourcesinYellowRiverBasin,China

  • Zhu, Yongnan;Lin, Zhaohui;Wang, Jianhua;Zhao, Yong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.203-203
    • /
    • 2016
  • The linkage between climate change and water security, i.e., the response of water resource to the future climate change, have been of great concern to both scientific community and policy makers. In this study, the impact of future climate on water resources in Yellow River Basin in North of China has been investigated using the Coupled Land surface and Hydrology Model System (CLHMS) and IPCC AR5 projected future climate change in the basin. Firstly, the performances of 14 IPCC AR5 models in reproducing the observed precipitation and temperature in China, especially in North of China, have been evaluated, and it's suggested most climate models do show systematic bias compared with the observation, however, CNRM-CM5、HadCM5 and IPSL-CM5 model are generally the best models among those 14 models. Taking the daily projection results from the CNRM-CM5, along with the bias-correction technique, the response of water resources in Yellow river basin to the future climate change in different emission scenarios have been investigated. All the simulation results indicate a reduction in water resources. The current situation of water shortage since 1980s will keep continue, the water resources reduction varies between 28 and 23% for RCP 2.6 and 4.5 scenarios. RCP 8.5 scenario simulation shows a decrease of water resources in the early and mid 21th century, but after 2080, with the increase of rainfall, the extreme flood events tends to increase.

  • PDF

Analysis of Effectiveness for Water Cycle and Cost-Benefit according to LID Application Method in Environmentally-Friendly Village (친환경시범마을의 LID 적용에 따른 물순환 효과 및 비용편익 분석)

  • Baek, Jongseok;Lee, Sangjin;Shin, Hyunsuk;Kim, Hyungsan
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.1
    • /
    • pp.57-66
    • /
    • 2018
  • Water disasters such as flash floods and inundation caused by localized heavy rainfall in urban areas have a large impact on climate change but are also closely related to the increase in impervious areas as pointed out in domestic and international studies. It is difficult to secure natural green areas in urban areas that have already been developed. So, urban regeneration can be expected using water management optimized with technologies to secure infiltration and storage capacity such as Low-Impact Development technology. In this study, the water cycle improvement ability was confirmed by applying the LID technology within the district unit plan of the environmentally friendly village, and the economic feasibility of LID application was analyzed by estimating the costs and benefits of installing the facilities. The site was planned to conserve sufficient green and plans for securing the watershed infiltration and storage capacity were formulated with the application of additional LID technology, such as infiltration trenches, rain barrels and permeable pavements. The LID design method applicable to the site was established, and the water balance of the watershed was analyzed through simulations of the SWMM model. The water circulation improvement effect was confirmed through the water balance analysis, and the cost-benefits were determined according to the estimation method, and the economic analysis was conducted. This study confirms that the investment of LID technology is economically feasible for the hydrological improvement effect of the housing complex.

CEOP Annual Enhanced Observing Period Starts

  • Koike, Toshio
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.343-346
    • /
    • 2002
  • Toward more accurate determination of the water cycle in association with climate variability and change as well as baseline data on the impacts of this variability on water resources, the Coordinated Enhanced Observing Period (CEOP) was launched on July 1,2001. The preliminary data period, EOP-1, was implemented from July to September in 2001. The first annual enhanced observing period, EOP-3, is going to start on October 1,2002. CEOP is seeking to achieve a database of common measurements from both in situ and satellite remote sensing, model output, and four-dimensional data analyses (4DDA; including global and regional reanalyses) for a specified period. In this context a number of carefully selected reference stations are linked closely with the existing network of observing sites involved in the GEWEX Continental Scale Experiments, which are distributed across the world. The initial step of CEOP is to develop a pilot global hydro-climatological dataset with global consistency under the climate variability that can be used to help validate satellite hydrology products and evaluate, develop and eventually predict water and energy cycle processes in global and regional models. Based on the dataset, we will address the studies on the inter-comparison and inter-connectivity of the monsoon systems and regional water and energy budget, and a path to down-scaling from the global climate to local water resources, as the second step.

  • PDF