• Title/Summary/Keyword: Water Budget Factor

Search Result 17, Processing Time 0.027 seconds

Status of Exploitable Groundwater Estimations in Korea (우리나라 지하수 개발가능량 산정의 현황과 전망)

  • Chung, Il-Moon;Kim, Jitae;Lee, Jeongwoo;Chang, Sun Woo
    • The Journal of Engineering Geology
    • /
    • v.25 no.3
    • /
    • pp.403-412
    • /
    • 2015
  • We summarize the status of exploitable groundwater reserves in Korea based on reports of the National Basic Groundwater Plan, and review methods for estimating groundwater recharge rates, as recharge is a key factor in the estimation of exploitable groundwater reserves. We also outline the various methods used to assess exploitable groundwater reserves in previous groundwater investigation reports. Regarding advancements in the estimation of exploitable groundwater, we recommend that enhanced estimation methodologies (e.g., the water balance method and the advanced water table fluctuation method) and sustainable groundwater management concepts be adopted in the near future.

Study on Selection Criteria of Small-Scales Reservoirs for Emergency Action Plan(EAP) Establishment (소규모 저수지 대상 비상대처계획 수립 선정기준 연구)

  • Park, Ki-Chan;Choi, Kyung-Sook
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.3
    • /
    • pp.101-112
    • /
    • 2019
  • This study developed selection criteria of small-scales reservoirs, having under $300,000m^3$ storage capacity, for the Emergency Action Plan(EAP) establishment in order to reduce the disaster risks of the reservoir's failures. Those reservoirs are out of ranges of Korean EAP establishment standard, but have potential risk of disasters as they have often failed by the recent extreme rainfall events and earthquakes, causing economical and life losses. The problem of reservoir aging is also one of the reasons of them. In this study, the developed selection criteria of small reservoirs for EAP establishment are storage capacity, embankment height, reservoir age, heavy rain factor and earthquake factor. These criteria were selected based on the review of the existing EAP establishment guidelines, analysis of the past dam failure cases, and the previous related studies. The quantification of these criteria were conducted for the practical applications in the fields, and applied to 67 previous failures in order to investigate the relation of each criteria with these failures. The earthquake factor found to be the highest relations followed by heavy rain factors, combination of earthquake and heavy rain factors, and reservoir age. The classification was made as observation and review groups for EAP establishments based on overlapping numbers of each criteria. This classifications applied to 354 reservoirs designated as having the potential disaster risk by MOIS, and showed 38.4% of observation and 11.9% of review groups. Anticipatory monitoring and regular inspection should be made by professional facility managers for the observation group, and necessity of EAP establishment should be assessed for the review group based on the downstream status and financial budget.

Ecological Importance of Water Budget and Synergistic Effects of Water Stress of Plants due to Air Pollution and Soil Acidification in Korea (한국에서 수분수지의 생태적 중요성과 대기오염 및 토양 산성화로 인한 식물의 수분스트레스 증대 효과)

  • 이창석;이안나
    • The Korean Journal of Ecology
    • /
    • v.26 no.3
    • /
    • pp.143-150
    • /
    • 2003
  • Korea has plentiful precipitation but rainfall events concentrate on several months of rainy season in her weather condition. Korea, therefore, experiences drought for a given period every year. Moreover the soil has usually low water holding capacity, as it is composed coarse particles originated from the granite. Response of several oaks and the Korean red pine (Pinus densiflora) on water stress showed that water budget was significant factor determining vegetation distribution. In addition, dehydration level due to cold resistance mechanism of several evergreen plants during the winter season was closely related to their distribution in natural condition. Experimental result under water stress showed that the Korean red pine was very tolerant to desiccation but the seedlings showed high mortality during the dry season. The mortality tended to proportionate to soil moisture content of each site. A comparison between soil moisture content during June when it is severe dry season and moisture content of the culture soil when the pine seedlings reached the permanent wilting point due to water withheld proved that high mortality during the dry season was due to water deficit. Water potential of sample plants measured during the exposure experiment to the air pollutant showed a probability that water related factors would dominate the occurrence of visible damage and the tolerance level of sample plants. In both field survey and laboratory experiment, plants exposed to air pollution showed more rapid transpiration than those grown in the unpolluted condition. The result would due to injury of leaf surface by air pollutants. Aluminum (Al/sup 3+/) increased in the acid soil not only inhibits root growth but also leads to abnormal distribution of root system and thereby caused water stress. The water stresses due to air pollution and soil acidification showed a possibility that they play dominating roles in inducing forest decline additionally to the existing water deficit due to weather and soil conditions in Korea. Sludge, which can contribute to improve field capacity, as it is almost composed of organic matter, showed an effect ameliorating the retarded growth of plant in the acidified soil. The effect was not less than that of dolomite known in widely as such a soil ameliorator. Litter extract contributed also to mitigate the water stress due to toxic Al/sup 3+/. We prepared a model showing the potential interaction of multiple stresses, which can cause forest decline in Korea by synthesizing those results. Furthermore, we suggested restoration plans, which can mitigate such forest decline in terms of soil amelioration and vegetation restoration.

Prediction of Nitrogen Loading from Forest Stands in Eutrophication of Lake (호소 부영양화에 있어서 산림임반으로부터 질소부하 평가를 위한 조사)

  • Chung, Doug-Young;Lee, Young-Han;Lee, Jin-Ho;Park, Mi-Suk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.4
    • /
    • pp.430-437
    • /
    • 2010
  • The continuous release of nutrient sources into natural water resource can be a continuing problem in eutrophication, as well as severe reductions in water quality. However, any desirable measure is not developed yet even though so many researches and efforts have been done to solve this problem. Forest as one of troublesome nonpoint sources may contributes most to nutrient loading, but the loading of N and P from forest in order to grasp the eutrophication potential of nonpoint sources has not been evaluated. The nutrient sources from the organic litter accumulated on the surface of forest soils can be a critical factor in continuity of eutrophication of a lake. The decomposition rate of litter can be estimated to predict release of N and P from the forest stand. The loss rate of nitrogen is complicated but depends in part upon the physical matrix of the element. Therefore, long-term nutrient budget and flux estimates at stand would be useful tools in calculating potential nutrient fluxes into the watercourses in a sustainable way. The present investigation can give insight to the actual situation of the eutrophication potentials of forest as the practical nonpoint sources.

Impacts of Urban Land Cover Change on Land Surface Temperature Distribution in Ho Chi Minh City, Vietnam

  • Le, Thi Thu Ha;Nguyen, Van Trung;Pham, Thi Lan;Tong, Thi Huyen Ai;La, Phu Hien
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.2
    • /
    • pp.113-122
    • /
    • 2021
  • Urban expansion, particularly converting sub-urban areas to residential and commercial land use in metropolitan areas, has been considered as a significant signal of regional economic development. However, this results in urban climate change. One of the key impacts of rapid urbanization on the environment is the effect of UHI (Urban Heat Island). Understanding the effects of urban land cover change on UHI is crucial for improving the ecology and sustainability of cities. This research reports an application of remote sensing data, GIS (Geographic Information Systems) for assessing effects of urban land cover change on the LST (Land Surface Temperature) and heat budget components in Ho Chi Minh City, where is one of the fastest urbanizing region of Vietnam. The change of urban land cover component and LST in the city was derived by using multi-temporal Landsat data for the period of 1998 - 2020. The analysis showed that, from 1998 to 2020 the city had been drastically urbanized into multiple directions, with the urban areas increasing from approximately 125.281 km2 in 1998 to 162.6 km2 in 2007, and 267.2 km2 in 2020, respectively. The results of retrieved LST revealed the radiant temperature for 1998 ranging from 20.2℃ to 31.2℃, while that for 2020 remarkably higher ranging from 22.1℃ to 42.3℃. The results also revealed that given the same percentage of urban land cover components, vegetation area is more effective to reduce the value of LST, meanwhile the impervious surface is the most effective factor to increase the value of the LST.

Development of flow measurement method using drones in flood season (II) - application of surface velocity doppler radar (드론을 이용한 홍수기 유량측정방법 개발(II) - 전자파표면유속계 적용)

  • Lee, Tae Hee;Kang, Jong Wan;Lee, Ki Sung;Lee, Sin Jae
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.11
    • /
    • pp.903-913
    • /
    • 2021
  • In the flood season, the measurement of the river discharge has many restrictions due to reasons such as budget, manpower, safety, convenience in measurement and so on. In particular, when heavy rain events occur due to typhoons, etc., it is difficult to measure the amount of flood due to the above problems. In order to improve this problem, in this study, a method was developed that can measure the river discharge in a flood season simply and safely in a short time with minimal manpower by combining the functions of a drone and a surface velocity doppler radar. To overcome the mechanical limitations of drones caused by weather issues such as wind and rainfall derived from the measurement of the river discharge using the conventional drone, we developed a drone with P56 grade dustproof and waterproof performance, stable flight capability at a wind speed of up to 36 km/h, and a payload weight of up to 10 kg. Further, to eliminate vibration which is the most important constraint factor in the measurement with a surface velocity doppler radar, a damper plate was developed as a device that combines a drone and a surface velocity Doppler radar. The velocity meter DSVM (Dron and Surface Veloctity Meter using doppler radar) that combines the flight equipment with the velocity meter was produced. The error of ±3.5% occurred as a result of measuring the river discharge using DSVM at the point of Geumsan-gun (Hwangpunggyo) located at Bonghwang stream (the first tributary stream of the Geum River). In addition, when calculating the mean velocity from the measured surface velocity, the measurement was performed using ADCP simultaneously to improve accuracy, and the mean velocity conversion factor (0.92) was calculated by comparing the mean velocity. In this study, the discharge measured by combining a drone and a surface velocity meter was compared with the discharge measured using ADCP and floats, so that the application and utility of DSVM was confirmed.

Evaluation of MODIS-derived Evapotranspiration at the Flux Tower Sites in East Asia (동아시아 지역의 플럭스 타워 관측지에 대한 MODIS 위성영상 기반의 증발산 평가)

  • Jeong, Seung-Taek;Jang, Keun-Chang;Kang, Sin-Kyu;Kim, Joon;Kondo, Hiroaki;Gamo, Minoru;Asanuma, Jun;Saigusa, Nobuko;Wang, Shaoqiang;Han, Shijie
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.4
    • /
    • pp.174-184
    • /
    • 2009
  • Evapotranspiration (ET) is one of the major hydrologic processes in terrestrial ecosystems. A reliable estimation of spatially representavtive ET is necessary for deriving regional water budget, primary productivity of vegetation, and feedbacks of land surface to regional climate. Moderate resolution imaging spectroradiometer (MODIS) provides an opportunity to monitor ET for wide area at daily time scale. In this study, we applied a MODIS-based ET algorithm and tested its reliability for nine flux tower sites in East Asia. This is a stand-alone MODIS algorithm based on the Penman-Monteith equation and uses input data derived from MODIS. Instantaneous ET was estimated and scaled up to daily ET. For six flux sites, the MODIS-derived instantaneous ET showed a good agreement with the measured data ($r^2=0.38$ to 0.73, ME = -44 to $+31W\;m^{-2}$, RMSE =48 to $111W\;m^{-2}$). However, for the other three sites, a poor agreement was observed. The predictability of MODIS ET was improved when the up-scaled daily ET was used ($r^2\;=\;0.48$ to 0.89, ME = -0.7 to $-0.6\;mm\;day^{-1}$, $RMSE=\;0.5{\sim}1.1\;mm\;day^{-1}$). Errors in the canopy conductance were identified as a primary factor of uncertainty in MODIS-derived ET and hence, a more reliable estimation of canopy conductance is necessary to increase the accuracy of MODIS ET.