• Title/Summary/Keyword: Wastewater treatment systems

Search Result 281, Processing Time 0.031 seconds

Estimation for Raw Water Quality of Manganese Concentrations from Archived Data in Small-scale Water Systems (소규모 정수처리장에서 모니터링 자료를 이용한 원수의 망간농도 예측에 관한 연구)

  • Min, Byung-Dae;Yamazaki Kimiko;Koizumi Akira;Koo, Ja-Yong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.4
    • /
    • pp.547-554
    • /
    • 2011
  • In small-scale water systems, the measurement of quality of raw water in running water is generally implemented when the quality of water is stable and frequency of measurement is low. However, units such as water temperature and pH, which are easily monitored, are frequently measured. In establishing an improvement plan for a water treatment system, the range of concentration of the target material present in the raw water of the running water provides relevant information. If the concentration of target material can be specified by the quality of water of data items that are measured daily, inverse estimation of the range of concentration is possible as well. In this paper, we took note of manganese in the raw water from Ogasawara-mura, Tokyo, and estimated the manganese concentration in the raw water of the running water for the past five years. Based on the results obtained, we have proposed a manganese removal system, considering the current situation and geographical conditions of Ogasawara-mura.

A study on the application of water safety plans for the hazard risk management of tap water (수돗물 위해요소 리스크 관리를 위한 물안전계획 적용 연구)

  • Kim, Jinkeun;Kim, Dooil
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.4
    • /
    • pp.259-268
    • /
    • 2019
  • One of the most effective methods to consistently ensure the safety of a tap water supply can be achieved by application of a comprehensive risk assessment and risk management approach for drinking water supply systems. This approach can be termed water safety plans(WSP) which recommended by WHO(world health organization) and IWA(international water association). For the introduction of WSP into Korea, 150 hazards were identified all steps in drinking water supply from catchment to consumer and risk assessment tool based on frequency and consequence of hazards were developed. Then, developed risk assessment tool by this research was implemented at a water treatment plant($Q=25,000m^3/d$) to verify its applicability, and several amendments were recommended; classification of water source should be changed from groundwater to stream to strengthen water quality monitoring contaminants and frequencies; installation of aquarium to monitor intrusion of toxic substances into raw water; relocation or new installation on-line water quality analyzers for efficient water quality monitoring; change of chlorination chemical from solid phase($Ca(OCl)_2$) to liquid phase(NaOCl) to improve soundness of chlorination. It was also meaningful to propose hazards and risk assessment tool appropriate for Korea drinking water supply systems through this research which has been inconsistent among water treatment authorities.

Biological Treatment of Dyeing Wastewater Using Jet Loop Reactor with Activated Carton Supports (활성탄 담체가 포함된 Jet-Loop Reactor를 이용한 종합염색폐수처리)

  • 조무환;박종탁;이길호;류원률
    • KSBB Journal
    • /
    • v.17 no.3
    • /
    • pp.241-246
    • /
    • 2002
  • Today, many problems of dye-processing wastewaters were raised due to industry of dyeing and textiles. It is difficult to treat them perfectly because they contain many poorly degradable matters, such as surfactants, ethylene glycol, polyvinyl alcohol, and so on. To improve the performances of conventional physicochemical treatment and activated sludge process, new systems of combining jet-loop reactor (JLR) with physicochemical treatment were developed. Volumetric oxygen transfer coefficient ($k_{L}a$) of JLR was significantly larger than that of air-lift reactor. Also, for the effective treatment of dye-processing wastewater, JLR with active carbon supports (JLRAS) were investigated. Removal efficiency of BOD, $COD_{Mn}$, $COD_{Cr} and color were found as 99, 86, 84, 83%, respectively, when HRT was 8 hrs. And performance of JLRAS was rapidly restored after step change of $COD_{Mn}$ loading late. The optimal coagulant and dosage of second physicochemical treatment after JLRAS were polyferric sulfate and 130 mg/L, respectively, when removal efficiencies of $COD_{Mn} and color were 85 and 73%, respectively. In conclusion, this system enables the reduction of operation cost, and the effective removal of many organics.

Assessment of Advanced Oxidation Processes using Low and Medium-Pressure Lamps with H2O2 for Reclamation of Biologically Treated Wastewater Effluents (하수 2차 처리수 재이용을 위한 저압 및 중압 고도산화시스템의 성능평가)

  • Ahn, Kyu-Hong;An, Seok;Maeng, Seung-Kyu;Kim, Ki-Pal;Hong, Joon-Seok;Jung, Min-Woo;Kweon, Ji-Hyang;Ahmed, Zubair
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.17 no.4
    • /
    • pp.542-549
    • /
    • 2003
  • In the present study, the feasibility of $UV/H_2O_2$ systems was investigated using low and medium-pressure lamps on biologically treated wastewater effluents for secondary effluent reclamation. Two types of UV lamps were used as the light sources (a 39-W low-pressure mercury lamp and a 350-W medium-pressure mercury lamp). The results from these UV systems showed that the removal of organic compounds could be achieved in the contact time of longer than 30min (i.e., low UV doses). Efficiencies of color removal and disinfection were far better than those of organic matters measured as TOC, DOC and $TCOD_{cr}$. In the low-pressure lamp UV system, it has been found that DOC and color removals were 60.9 and 86.2% with 50mg/L of $H_2O_2$ and contact times of 30 minute, respectively. Whereas, with the medium-pressure lamp UV system, TOC, DOC and color removal were 27.1, 5.6 and 95% with 14.3mg/L of $H_2O_2$ and 14 minute of contact times, respectively. Both systems could be applied for the reclamation of secondary effluent treated with biological treatment processes.

Appropriate Sewerage Systems for Korea (우리나라 적합 하수도시설 및 관리방안)

  • 이상은
    • Journal of environmental and Sanitary engineering
    • /
    • v.7 no.2
    • /
    • pp.37-52
    • /
    • 1992
  • Since the first sewage treatment plant was constructed in 1976, the sewerage systems of Korea have been rapidly expanded. As of the end of 1991, 22 sewage treatment plants with total capacity of 5.4 million tons/day are in operation which is equivalent of 3395 total daily sewage generation. Total extension of sewer 39.534 km in 1990 which is 55% of the target extension for the year 2001. However, the most sewage treatment plants employ activated sludge process which may not be suitable for medium and/or small scale plants. The poor existing sewer systems do not effectively collect and transport sewage to adversely affect the function of sewage treatment plant. To select the appropriate treatment system, the cities are classified into 3 categories such as large and medium size inland cities, small size cities and coastal cities. Considering the criteria suggested during this study, appropriate treatment processes were selected for each category. Conventional activated sludge process and step aeration process were found to be the most appropriate for big inland cities while biological nutrient removal processes should be considered for the cities discharge the effluent to lakes or reservoirs. RBC or Oxidation Ditch process might be appropriate for the medium size cities while several processes which do not require skilled operation and maintenance were suggested for the small cities. Ocean discharge after primary treatment can be considered for some east coast cities, Appropriate methodology to rehabilitate the existing sewers and strategy to convert combined sewer system to separate sewer system were proposed. This paper also include the appropriate management system for industrial wastewater, sludge and nightsoil.

  • PDF

Estimation of Influence of Milking System Type on Milking Center Effluent Amount and its Characteristics (착유시스템 유형별 세척수의 발생량과 특성)

  • Choi, D.Y.;Kwag, J.H.;Park, C.H.;Jeong, K.H.;Kim, J.H.;Yoo, Y.H.;Jeong, M.S.;Han, C.B.;Choi, H.L.
    • Journal of Animal Environmental Science
    • /
    • v.14 no.3
    • /
    • pp.149-158
    • /
    • 2008
  • The purpose of this study was to determine the effect of milking system type on milking center effluent production through the four seasons. Four different types of milking systems (Bucket, Pipeline, Tandem and Herringbone) were estimated, in duplicate, through the different seasons. The following conclusions can be drawn from this study. 1. The quantity of wastewater produced from Tandem and Herringbone milking systems were significantly larger than Bucket milking system (p<0.05). 2. The main wastewater production was from the washing of milking apparatus. Tandem and Herringbone milking systems produced 398.8 and $407.7{\ell}$/day of wastewater, respectively, for apparatus washing. These values were significantly higher than the other milking systems during the summer (p<0.05). 3. The average wastewater production from the various milking systems was $15.4{\ell}$/head/day. The quantity of wastewater production during summer ($16.4{\ell}$/head/day) season was higher than of the other seasons. 4. The highest level of $BOD_5$ ($906.4mg/\ell$) was produced from the washing of the parlor floor and the lowest level of $BOD_5$ ($212.4mg/\ell$) was produced from the washing of the udders of the cows. 5. The pH of dairy wastewater was in the range of $7.3{\sim}8.2$ and the average levels of $BOD_5$, COD, SS, T-N, and T-P were 731.2, 479.0, 751.6, 79.1, $14.7mg/\ell$, respectively. Following conclusions can be drawn from this experiment. The quantities of wastewater production from Bucket, Pipeline, Tandem and Herringbone milking system were 143.9, 487.9, 914.0, and $856.7{\ell}$, respectively. The average wastewater produced from the milking systems was $15.4{\ell}$/head per day. In order to effectively manage on the wastewater from milking systems, dairy farms need to consider the milking system type and farm size when determining the optimum wastewater treatment system.

  • PDF

Removal of taste and odor causing compounds in drinking water using Pulse UV System (Pulse UV 장치를 이용한 먹는 물의 이취미 유발물질 제거효과에 관한 연구)

  • Sohn, Jin-Sik;Park, Soon-Ho;Jung, Eui-Taek
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.2
    • /
    • pp.219-228
    • /
    • 2012
  • Problems due to the taste and odor in drinking water are common in treatment facilities around the world. Taste and odor are perceived by the public as the primary indicators of the safely and acceptability of drinking water, and are mainly caused by the presence of two semi-volatile compounds-2-methylisoborneol(2-MIB) and geosmin. Conventional treatment processes in water treatment plants, such as coagulation, sedimentation and chlorination have been found to be ineffective for the removal of 2-MIB and geosmin. Pulse UV system is a new UV irradiation system that is a non-mercury lamp-based alternative to currently used continuous wave systems for water disinfection. This study shows pulse UV system to be effective in treatment of these two compounds. Geosmin removal efficiency of UV process alone achieved approximately 70% at 10sec contact time. 2-MIB removal efficiency of UV only process achieved approximately 60% at 10sec contact time. The addition of $H_{2}O_{2}$ 7mg/L increased geosmin and 2-MIB removal efficiency upto approximately 94% and 91%, respectively.

Inactivation of various bacteriophages in wastewater by chlorination; Development of more reliable bacteriophage indicator systems for water reuse (하수 처리 과정의 염소 소독에 대한 여러 박테리오파지들의 저항성 평가; 물 재이용 과정의 안전성 관리를 위한 바이러스 지표미생물의 개발)

  • Bae, Kyung-Seon;Shin, Gwy-Am
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.3
    • /
    • pp.285-291
    • /
    • 2016
  • There has been an accelerating increase in water reuse due to growing world population, rapid urbanization, and increasing scarcity of water resources. However, it is well recognized that water reuse practice is associated with many human health and ecological risks due to numerous chemicals and pathogenic microorganisms. Especially, the potential transmission of infectious disease by hundreds of pathogenic viruses in wastewater is one of the most serious human health risks associated with water reuse. In this study, we determined the response of different bacteriophages representing various bacteriophage groups to chlorination in real wastewater in order to identify a more reliable bacteriophage indicator system for chlorination in wastewater. Different bacteriophages were spiked into secondary effluents from wastewater plants from three different geographic areas, and then subjected to various doses of free chlorine and contact time at $5^{\circ}C$ in a bench-scale batch disinfection system. The inactivation of ${\phi}X174$ was relatively rapid and reached ~4 log10 with a CT value of 5 mg/L*min. On the other hand, the inactivation of bacteriophage PRD1 and MS2 were much slower than the one for ${\phi}X174$ and only ~1 log10 inactivation was achieved by a CT value of 10 mg/L*min. Overall, the results of this study suggest that bacteriophage both MS2 and PRD1 could be a reliable indicator for human pathogenic viruses for chlorination in wastewater treatment processes and water reuse practice.

Performance for a small on-site wastewater treatment system using the absorbent biofilter in rural areas (흡수성 Biofilter 를 이용한 농촌 소규모 오수처리 시설의 성능)

  • Kwun, Soon-Kuk;Yoon, Chun-Gyeong
    • Korean Journal of Environmental Agriculture
    • /
    • v.18 no.4
    • /
    • pp.310-315
    • /
    • 1999
  • The feasibility of an absorbent biofilter system was examined for rural wastewater treatment. Hydraulic loading rates varied from 50 to 250 cm/day. Effluent of the septic tank was fed into the absorbent biofilter, and small ventilation fan was provided to supply air at the rate of 250 L/min to aerate the biofilter. The biofilter system demonstrated high removal rates for $BOD_5$ and TSS at the loading rate of 150 cm/day, generally meeting the Korean effluent water quality standard of 20 mg/L applicable to both. The nutrient removal was less satisfactory than the results of $BOD_5$ and TSS, but it was within the expected range of biological treatment processes. Considering the abnormally high influent concentration of nutrients during the experiment, better performance results could have been obtained if ordinary domestic wastewater was used. The system performance was not significantly affected by the hydraulic loading up to 150 cm/day, which is far more than the loading limit of the sand filter systems. Maintenance requirement was minimal, and no problems with noise, odor, flies or sludge arose. Since the biofilter system can be operated at a distance, operation in remote rural area and multi-system connected to one control office might be advantageous to the rural area. Overall, considering the cost-effectiveness, stable performance, and minimum maintenance, the biofilter system was thought to be a competitive alternative to treat wastewater in Korean rural communities.

  • PDF

Algal Bioassay for the Treated and Raw Wastewater in the Kyongan Stream (경안천에서 하수처리수와 생하수에 대한 algal bioassay)

  • Lee, Ok-Hee;Hwang, Soon-Jin;Cho, Kyung-Je;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.34 no.3 s.95
    • /
    • pp.192-198
    • /
    • 2001
  • The Kyongan Stream and the inlet part of Paltang Reservoir are under significant influence of the effluent of sewage wastewater treatment plant (SWTP) and untreated domestic wastewater (DOW). The fertility of wastewater was evaluated through bioassay using natural phytoplankton population diluted in five levels. The concentrations of $NH_4$, SRP and SRSi were positively correlated with the biomass of phytoplankton. P concentration showed stronger correlation (r = 0.959, p<0.001)than other nutrients. Compared with the initial concentrations, $NH_4$ concentrations in samples from SWTP and DOW decreased 96% and 7%, respectively during the cultivation, and those of SRSi decreased 97% and 60%. However, $NO_3$ concentrations in samples neither showed any particular change nor any increase. Chl-a concentration ranged between $20\;{\mu}g/l$ and $125\;{\mu}g/l$, which maximum value increased up to 83 times. Estimated from the relationship between chl-a and SRP, the P concentration that can maintain the biomass of algae under mesotrophic state (<25\;{mu}g$\;chl-a/l$) was $83\;{mu}g\; P/l$. The volume of flow to maintain this level solely by natural dilution was about $16{\sim}25$ times of in flowing volume in the stream. However, it is not feasible to tap water of such quantity. Therefore, it is imperative to build an advanced sewage wastewater treatment facility that can reduce $NH_4$ and SRP concentrations that promote the growth of phytoplankton in discharged water.

  • PDF