• Title/Summary/Keyword: Wastewater Treatment Plant

Search Result 949, Processing Time 0.022 seconds

Protozoa as an Indicator of Effluent Quality at Advanced Wastewater Treatment Plants (고도폐수처리장에서 원생동물을 이용한 수질예측)

  • Lee, Chan-Hyung;Moon, Kyung-Suk;Park, Sang-Jung;Lee, Eun-Ju;Cho, Jae-Keun;Jin, Ing-Nyol
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.4
    • /
    • pp.389-396
    • /
    • 2006
  • A quantitative survey of the protozoa microfauna at two advanced wastewater treatment plants has been carried out on a weekly basis. The abundance of the protozoa were compared with operating parameters and effluent quality using statistical procedures. The protozoa distribution indicated it seemed the composition of the influent wastewater and operating conditions of plant influenced the structure of protozoa in the plant. In statistical analysis, the distribution of protozoa showed the present operating condition of plant and predicted near-future effluent qualify. Enough data concerning protozoa, operating parameters and effluent has been gathered, the operator has a valuable tool for predicting plant performance and near-future data of effluent based on microscopic examination. Perhaps more importantly it can be used to actually control the plant to adjust the operating conditions to obtain the protozoal populations that have been shown to provide the best effluent quality.

Bioindicator at $A_2O$ Wastewater Treatment Plant ($A_2O$ 공법 처리장의 Bioindicator)

  • Lee, Chan-Hyung;Moon, Kyung-Sook
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.1
    • /
    • pp.55-60
    • /
    • 2005
  • The occurrence and abundance of protozoa at advanced wastewater treatment plant were compared with operating parameters and effluent quality using statistical procedures. In correlation analysis between the distribution of protozoa and operating parameters, the distribution of protozoa was showed the operating condition of plant. Regression analysis between the distribution of protozoa and effluent quality up to 7 days, showed the R-square values of most regression equation were more than 0.6 and constant was higher than slope and could indicate effluent quality from sampling day to 7 days. Once enough data concerning protozoa, operating parameters and effluent has been gathered, the operator has a valuable tool for predicting plant performance and near-future effluent quality based on microscopic examination. Plant operator manipulates operating conditions if he knows near-future data of effluent is deteriorating. Perhaps more importantly it can be used to actually control the plant to adjust the operating conditions to obtain the protozoal populations that have been shown to provide the best effluent quality.

A process diagnosis method for membrane water treatment plant using a constant flux membrane fouling model (정유량 막여과 파울링 모델을 이용한 막여과 정수 플랜트 공정 진단 기법)

  • Kim, Suhan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.1
    • /
    • pp.139-146
    • /
    • 2013
  • A process diagnosis method for membrane water treatment plant was developed using a constant flux membrane fouling model. This diagnosis method can be applied to a real-field membrane-based water treatment plant as an early alarming system for membrane fouling. The constant flux membrane fouling model was based on the simplest equation form to describe change in trans-membrane pressure (TMP) during the filtration cycle from a literature. The model was verified using a pilot-scale microfiltraton (MF) plant with two commercial MF membrane modules (72 m2 of membrane area). The predicted TMP data were produced using the model, where the modeling parameters were obtained by the least square method using the early plant data and modeling equations. The diagnosis was carried out by comparing the predicted TMP data (as baseline) and real plant data. As a result of the case study, the diagnsis method worked pretty well to predict the early points where fouling started to occur.

Endocrine Disrupting Effects of the Industrial Wastewater Effluents Discharged from the Treatment Plant (산업폐수처리장 방류수의 내분비계 장애작용 평가)

  • Oh Seung-Min;Kim Gi-Suh;Ryu Byung Taek;Jang Hyung Seog;Lee Hee-Sung;Chung Kyu-Hyuck
    • Environmental Analysis Health and Toxicology
    • /
    • v.19 no.4
    • /
    • pp.375-382
    • /
    • 2004
  • This study was designed to investigate potential endocrine disrupting effects of several industrial wastewater effluents discharged from cosmetic, plaiting, paint, textile industry using EROD bioassay and E-Screen assay. The results of E-screen assay showed that textile industrial wastewater could act as a full agonist and cosmetics and plaiting industrial wastewater could act as a partial agonist. On the contrary, the wastewater discharged from paint industry did not show any estrogenic effect. Estrogenic activity in the effluents of cosmetic and paint industrial wastewater was lower than that in the influents indicating that the wastewater treatment process minimized the effects of discharges on water quality. Despite of these results, it was recognized that wastewater treatment was not always minimize toxic impact. In this study, increased estrogenic effect was observed in the effluents of plating and textile wastewater, and EROD activity was increased in the effluents of cosmetic and plating wastewater.

Behavior of perfluorinated compounds in advanced water treatment plant (고도 정수처리장에서의 과불화합물 거동)

  • Lim, Chaeseung;Kim, Hyungjoon;Han, Gaehee;Kim, Ho;Hwang, Yunbin;Kim, Keugtae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.5
    • /
    • pp.323-334
    • /
    • 2020
  • Adsorption by granule activated carbon(GAC) is recognized as an efficient method for the removal of perfluorinated compounds(PFCs) in water, while the poor regeneration and exchange cycles of granule active carbon make it difficult to sustain adsorption capacity for PFCs. In this study, the behavior of PFCs in the effluent of wastewater treatment plant (S), the raw water and the effluents of drinking water treatment plants (M1 and M2) located in Nakdong river waegwan watershed was monitored. Optimal regeneration and exchange cycles was also investigated in drinking water treatment plants and lab-scale adsorption tower for stable PFCs removal. The mean effluent concentration of PFCs was 0.044 0.04 PFHxS g/L, 0.000 0.00 PFOS g/L, 0.037 0.011 PFOA g/L, for S wastewater treatment plant, 0.023 0.073 PFHxS g/L, 0.000 0.00 PFOS g/L, 0.013 0.008 PFOA g/L for M1 drinking water treatment plant and 0.023 0.073 PFHxS g/L, 0.000 0.01 PFOS g/L, 0.011 0.009 PFOA g/L for M2 drinking water treatment plant. The adsorption breakthrough behaviors of PFCs in GAC of drinking water treatment plant and lab-scale adsorption tower indicated that reactivating carbon 3 times per year suggested to achieve and maintain good removal of PFASs. Considering the results of mass balance, the adsorption amount of PFCs was improved by using GAC with high-specific surface area (2,500㎡/g), so that the regeneration cycle might be increased from 4 months to 10 months even if powdered activated carbon(PAC) could be alternatives. This study provides useful insights into the removal of PFCs in drinking water treatment plant.

Wastewater Treatment Plant Control Strategies

  • Ballhysa, Nobel;Kim, Soyeon;Byeon, Seongjoon
    • International journal of advanced smart convergence
    • /
    • v.9 no.4
    • /
    • pp.16-25
    • /
    • 2020
  • The operation of a wastewater treatment plant (WWTP) is a complex task which requires to consider several aspects: adapting to always changing influent composition and volume, ensuring treated effluents quality complies with local regulations, ensuring dissolved oxygen levels in biological reaction tanks are sufficient to avoid anoxic conditions etc. all of it while minimizing usage of chemicals and power consumption. The traditional way of managing WWTPs consists in having employees on the field measure various parameters and make decisions based on their judgment and experience which holds various concerns such as the low frequency of data, errors in measurement and difficulty to analyze historical data to propose optimal solutions. In the case of activated sludge WWTPs, parts of the treatment process can be automated and controlled in order to satisfy various control objectives. The models developed by the International Water Association (IWA) have been extensively used worldwide in order to design and assess the performance of various control strategies. In this work, we propose to review most recent WWTP automation initiatives around the world and identify most currently used control parameters and control architectures. We then suggest a framework to select WWTP model, control parameters and control scheme in order to develop and benchmark control strategies for WWTP automation.

Relationship between Energy Consumption and Operational Variables at Wastewater Treatment Plant (상관분석 및 의사결정나무분석을 통한 하수처리시설의 에너지 소비량과 운영인자의 관계 분석)

  • Jung, Yong-Jun;Kim, Ye-Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.3
    • /
    • pp.253-260
    • /
    • 2016
  • To reduce energy consumption in wastewater treatment plants (WWTPs), renewable energy applications such as small hydropower, solar energy, and wind energy are popular. However, it should be noticed that energy originated from operation of wastewater treatment process can be reduced through optimized operation based on analysis of factors affecting energy. In this research, the relationship to the various operational variables and influent factors was explored using correlation analysis and decision tree algorithm. Due to the non-linear characteristics of the process, it was difficult to find clear linear patterns through correlation analysis. However, decision tree algorithm showed its usefulness in uncovering hidden patterns that consume energy. As operational factors, influent flowrate, the amount of aeration, nitrate recycling pumping rate, and sludge wasting pumping rate were selected as important factors. For environmental factors associated with influent compositions and removal rate, BOD and T-N removal rate were selected as significant factors.

Survey of the Secondary Effluents from Municipal Wastewater Treatment Plants in Korea (우리나라 하수처리장 방류수 수질현황 및 특성)

  • Kim, Youngchul;An, Ik-Sung;Kang, Min-Gi
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.2
    • /
    • pp.158-168
    • /
    • 2005
  • In this study, the discharging effluents from have been 9 municipal wastewater treatment plants surveyed for 1 year-period. Statistics including probability distribution, cumulative occurrence concentration and other statistical parameters were presented. In addition, treatment performance and its stability were also discussed. Most of the plants, have an operational problem of high soluble organic content in the secondary effluent which may be associated with the integrated treatment of human and livestock manures. Nitrogen concentration in the effluents were usually higher during the period of summer and winter. It was found that this is mainly due to lack of the proper C/N ratio during the summer, or/and the effects of low temperature and less dilution by dry weather during the winter. Phosphorus concentration is sharply increased in June. Discussion with plant operators told that it is due to the dissolution of phosphate from the sludge accumulated in the primary settling tanks from the early spring to june. During this period, usually, sludge treatment line is highly overloaded with flush-outs of the sediments also stored in the bottom of combined sewer due to the low flow during winter season. Most of the plants can meet new effluent discharge limits of the nitrogen and phosphorus, and total coliform without further treatment.

Initial Operating Condition of Membrane Bioreactor with PVDF Hollow Fiber and Permeate Reuse (PVDF 중공사막을 이용한 막생물반응기의 초기 운전조건 설정 및 여과수 재활용)

  • Shin, Choon-Hwan;Kang, Dong-Hyo;Park, Hae-Sik;Cho, Hyun-Kil
    • Clean Technology
    • /
    • v.16 no.1
    • /
    • pp.39-45
    • /
    • 2010
  • In this paper, 4 bundle modules of PVDF hollow fiber membrane from Woori Tech company (Korea) were manufactured in a treatment capacity of 10 ton/day. A membrane bioreactor (MBR) pilot plant was installed at Sooyoung Wastewater Treatment Plant in Busan. An alternating aeration process was selected to avoid the concentration profile of suspended solid (SS) in the MBR. For stable operation, raw wastewater with mixed liquor suspended solid (MLSS) of about 1,000 ppm, which was in-flowed from the aeration tank of the wastewater treatment plant, was fed and filtered through the pilot plant. Subsequently the pilot plant were washed three times with washing water: once with ethanol solution, once with a solution of 5% NaOCl, and finally with washing water. After the chemical washing, the remaining water in the MBR was fed into the pilot plant. As a result, the SS removal efficiency was found to be more than 99.9%. The amount of filtrate with the aeration tank influent decreased by 16%, compared with that from the initial conditions, giving rise to 30% increase in the suction pressure. These results were used to set up continuous operation conditions. The results from the continuous operation with influent MLSS of 1,900 mg/L showed that the SS removal efficiency was about 99.99% and that the amount of filtrate and the suction pressure were $42{\sim}52L/m^2$ and 16~20 cmHg, respectively, indicating stable operation of the pilot plant. However, for the reuse of wastewater, methods need to be sought to avoid growth of algae which affects the SS removal efficiency at inlet and outlet of the permeate tank.