• 제목/요약/키워드: Wastewater Characteristics

검색결과 1,156건 처리시간 0.024초

호염기성 미세조류 Arthrospira platensis의 폐수처리 적용을 위한 종특이성 평가 (Species Specificity Evaluation for Wastewater Treatment Application of Alkaliphilic Microalgae Arthrospira platensis)

  • 이수현;허재희;황선진
    • 한국물환경학회지
    • /
    • 제38권6호
    • /
    • pp.282-291
    • /
    • 2022
  • Since the efficiency of wastewater treatment using microalgae differs depending on the metabolic characteristics of the species, it is important to understand the characteristics of target algae prior to the application in wastewater treatment. In this study, for the application of Arthrospira platensis to wastewater treatment, which is a filamentous alkaliphilic cyanobacteria, basic species specificity was identified and the possibility of application to wastewater treatment was investigated. As a result of the species specificity investigation, the specific growth rate between pH 7.0 and 11.0 showed the highest value near pH 9 at 0.25/day. The reason for the relatively low growth(0.08/day) at pH 11 was thought to be the CA(carbonic anhydrase) enzyme that is involved in carbon fixation during photosynthesis has the highest activity at pH 8.0 to 9.0, and at pH 11, CA activity was relatively low. In addition, A. platensis showed optimal growth at 400 PPFD(photosynthetic photon flux density) and 30℃, and this means that cyanobacteria such as A. platensis have a larger number of PS-I(photosystem I) than that of PS-II(photosystem II). It was speculated that it was because higher light intensity and temperature were required to sufficiently generate electrons to transfer to PS-I. Regarding the applicability of A. platensis, it was suggested that if a system using the synergistic effect of co-culture of A. platensis and bacteria was developed, a more efficient system would be possible. And different from single cocci, filamentous A. platensis expected to have a positive impact on harvesting, which is very important in the latter part of the wastewater treatment process.

물질수지분석을 이용한 하수처리장 유입수질 측정 센서의 상태 진단 (Sensor State Isolation for Wastewater Based on Influent Characteristics Methodology)

  • 백지원;김종락;유광태;김예진
    • 한국물환경학회지
    • /
    • 제40권4호
    • /
    • pp.168-178
    • /
    • 2024
  • Wastewater treatment plants are constantly exposed to influent wastewater that is constantly changing. This poses a major challenge to the operation of the plants. It is crucial to have a rapid and accurate measurement of the influent concentrations of wastewater in order to maintain and optimize treatment performance, as well as to develop energy-saving strategies. While laboratory measurements provide the highest accuracy in determining influent water quality, they are inevitably time-consuming procedures. In order to cope with the ongoing disturbances from wastewater influent, absorption-based optical measuring instruments have been developed. These instruments can detect the influent water quality in a short amount of time, improving their practicality and reliability. However, when these optical measuring instruments malfunction, the accuracy of the measured values decreases, leading to unreasonable operation of the treatment plant. This paper proposes a method for detecting anomalies in optical water quality measurement devices. The Harmony Search algorithm is used to validate the measured water quality values and detect abnormalities such as contamination or physical anomalies in the measurement apparatus. To assess the performance of the developed algorithm in detecting anomalies, validation was conducted by installing it in a field-scale wastewater treatment plant. The results consistently showed that the developed fault detection method for optical water quality measurements equipment provided acceptable results for normal, temporary abnormal, and long-term abnormal conditions.

순산소 활성오니 공정을 이용한 제지폐수의 처리특성 (Treatment Characteristics of Paper-mill Wastewater Using Pure Oxygen Activated Sludge Process)

  • 김성순;정태학
    • 상하수도학회지
    • /
    • 제13권4호
    • /
    • pp.27-34
    • /
    • 1999
  • An experimental study on improvement of the paper-mill wastewater treatment using the pure oxygen activated sludge process was conducted. The effects of hydraulic retention time(HRT) and BOD loading on organic removal efficiency were investigated. The BOD removal efficiencies were above 90% under all examined HRTs except for HRT of 3 hours. The increase of HRT from 3 hours to 6 hours, and to 12 hours significantly improved BOD and COD removal efficiencies, respectively. However, additional increase of HRT did not affect organic removal efficiency. F/M ratio change at fixed HRT did not affect organic removal efficiency. However, F/M ratio investigated in this study(0.11~1.98kgBOD/kgMLVSS/day) was 5 times greater in maximum than that of conventional activated sludge process, which implies that pure oxygen activated sludge process can treat wastewater with high organic strength. Under the same HRT, the volumetric BOD loading change cause no effect on organic removal efficiency also.

  • PDF

에너지 자립형 MBR, A/O 공정의 효율 평가 (Efficiency evaluation of MBR, A/O processes utilizing self-sufficient energy)

  • 임세택;김진근
    • 상하수도학회지
    • /
    • 제28권3호
    • /
    • pp.305-314
    • /
    • 2014
  • A pilot plant (Q=5 $m^3/d$) study was implemented for small and medium sized personal wastewater treatment plant effluent to evaluate MBR and A/O processes utilizing self-sufficient energy composed of wind and solar energy. The removal efficiencies of BOD, SS, turbidity and color were sufficient for legal water quality standards for gray water. However, those of nitrogen and phosphorus could not meet legal regulations which suggested that further removal of those contaminants were needed for reuse of the treated water. Self-sufficient energy rate was 100 % for the pilot plant due to excessive design capacity. In this research, wind and solar energy system was applied considering geological characteristics, which significantly improved energy self-sufficiency. Substantial improvement on energy self-sufficiency can be obtained by optimized investment and operation at a full scale wastewater treatment plant.

고속도로 청소폐수와 노면유출수의 수질특성 비교 (Comparison of Water Characteristics of Cleaning Wastewater and Stormwater Runoff from Highways)

  • 이주광;이의상
    • 환경영향평가
    • /
    • 제16권2호
    • /
    • pp.169-176
    • /
    • 2007
  • The paved areas in nonpoint source are highly polluted landuses because of high imperviousness and pollutant mass emissions, such as sand, cereals, and dust from vehicle activities. Most of them in highways are collected by cleaning trucks or discharged to the adjacent soil and water system through the drain ditch in stormwater. Therefore, it is necessary to investigate the relationship between water concentration and total pollutant loadings from the paved areas. From the experiment, CODcr concentration of the cleaning wastewater was 17 times greater than that of the stormwater runoff. Also, concentrations of heavy metals (Cu, Fe, Zn) were 1.3 to 1.5 times higher when compared to the stormwater runoff. While total discharged loadings was insignificant in the cleaning wastewater. In conclusion, these results provide some evidence that the stormwater runoff may be managed carefully to the aspect of total pollutant loadings and the cleaning wastewater may be handled cautiously with the pollutant concentrations in highways.

MHD 수처리방식에 의한 에멀젼오일폐수의 처리 (Emulsified Oily Wastewater Treatment by MHD Water Treatment Device)

  • 김인수;박승조
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제17권4호
    • /
    • pp.20-27
    • /
    • 1993
  • Emulsified oily wastewater is generally hard to treat in separating oil and water by conventional separators. In this paper the magnetohydrodynamic water treatment device was used to separate oil from emulsified oily wastewater which contained high conductivity. The emulsified oil removal rates and economic ranges of oil separation at various factors were investigated to confirm the influence of the magnetic field in MHD water treatment device according to the characteristics of emulsion brake. Experimental results proved that the oil removal rates were proportional to Lorentz force which depends on the intensity of magnetic field, conductivity and velocity of wastewater.

  • PDF

시계열모델을 이용한 하수처리장 유입수 성상 예측 (Forecast of Influent Characteristics in Wastewater Treatment Plant with Time Series Model)

  • 김병군;문용택;김홍석;김종락
    • 상하수도학회지
    • /
    • 제21권6호
    • /
    • pp.701-707
    • /
    • 2007
  • The information on the incoming load to wastewater treatment plants is not often available to apply to evaluate effects of control actions on the field plant. In this study, a time series model was developed to forecast influent flow rate, BOD, COD, SS, TN and TP concentrations using field operating data. The developed time series model could predict 1 day ahead forecasting results accurately. The coefficient of determination between measured data and 1 day ahead forecasting results has a range from 0.8898 to 0.9971. So, the corelation is relatively high. We made forecasting program based on the time series model developed and hope that the program will assist the operators in the stable operation in wastewater treatment plants.

크롬과 시안이 공존하는 폐수의 전해처리 특성 (Characteristics of Electrolytic Treatment for Chromium and Cyanide containing Wastewater)

  • 정일현;윤용수
    • 환경위생공학
    • /
    • 제13권3호
    • /
    • pp.85-92
    • /
    • 1998
  • In this study, the electrolytic treatment by one-stage electrolysis was investigated for electroplating wastewater containing $Cr^{6+}$ and $CN^{-}$. From the results, we concluded as follows : Optimum initial pH of wastewater was pH : 3. Amount of optimum addition of electroltyte(NaCl) was 0.1 wt%. Optimum potential for electrolysis was 5 volt. Concentration and removal efficiency for $Cr^{6+}$ and $CN^{-}$ were under 1 mg/L and above 99% at optimum conditions. And the feasibility of electrolytic treatment for electroplating wastewater containing $Cr^{6+}$ and $CN^{-}$ was certified.

  • PDF

착유시스템별 세척수 발생량에 관한 연구 (Research on the Amount of Wastewater Produced from the Different Milking System)

  • 최동윤;강희설;곽정훈;최희철;김재환;김태일;이덕수;권두중;한정대
    • 한국축산시설환경학회지
    • /
    • 제7권2호
    • /
    • pp.77-82
    • /
    • 2001
  • This research was carried out to investigate the daily amount and characteristics of wastewater produced from bucket milkers, pipeline, tandem ad herringbone milking system for washing operations after milking included 28 dairy farms. The average amount of wastewater produced from milking system was 9.8l/head/day. The amount of wastewater varied from a low of 8.2 litters/head/day(pipeline milking system) to 13.4 litter/head/day(herringbone milking system). The moisture content, Biochemical Oxygen Demand($BOD_5$), Chemical Oxygen Demand($COD_{Mn}$), Suspended Solids(SS), Total Nitrogen(T-N) and Total Phosphorus(T-P) concentration of wastewater were 99.9%, 394mg/l, 417.3mg/l, 1,201.3mg/l, 3.78mg/l, 0.51mg/l.

  • PDF

A state-of-the-art analysis of fresh, mechanical, durability and microstructural characterization of wastewater concrete

  • Nabil Ben Kahla;Ali Raza;Muhammad Arshad;Ahmed Babeker Elhag
    • Advances in concrete construction
    • /
    • 제17권2호
    • /
    • pp.93-110
    • /
    • 2024
  • The process of concrete production consumes an immense volume of water, with approximately one billion metric tons of freshwater being utilized for tasks such as aggregate washing, fresh concrete production, and concrete curing. The accessibility of clean water for the public is hindered by the limited availability of water resources, primarily due to the rapid expansion of industries such as tanneries, stone quarries, and concrete manufacturing. These industries not only consume substantial amounts of freshwater but also generate significant volumes of various types of waste. Therefore, the use of fresh water in concrete production should be minimized. Few studies have reviewed the production of concrete using wastewater to derive practical and applicable findings for the industry. Thus, this study thoroughly explores the physical and chemical effects of wastewater on concrete, examining aspects like durability, hardened properties, and rheological characteristics. It identifies key factors that can compromise concrete properties when exposed to wastewater. The scarcity of research on integrating wastewater into concrete production underscores the urgent necessity for innovative approaches and methodologies in this field. While the inclusion of wash water typically reduces the workability of fresh concrete, it often enhances its compressive strength. Notably, significant improvements have been observed when using tertiary processed wastewater, wash water, polyvinyl alcohol-based wash water (PVAW), and reclaimed water in the concrete mixing process. The application of tertiary treatment to wastewater resulted in a notable enhancement of compressive strength, showing increases of up to 7%. In contrast, wastewater treated through secondary methods experienced a decline in strength ranging from 9% to 18% over a period of six months. However, the use of reclaimed wastewater demonstrated an improvement in strength by 8% to 17%, depending on the concentration level ranging from 25% to 100%. In contrast, the utilization of secondary processed wastewater and industrial water has a minimal impact on the concrete's strength.