• Title/Summary/Keyword: Wastewater Based Epidemiology

Search Result 5, Processing Time 0.02 seconds

Wastewater-based epidemiology for the management of community lifestyle and health: An unexplored value of water infrastructure (하수기반역학을 이용한 커뮤니티 생활상 및 건강 관리: 물 인프라의 새로운 가치)

  • Jho, Eun-Hea;Kim, Hyoung-Il;Choi, Yongju;Youn, Youngho;Lee, Doyeon;Kim, Geunyoung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.1
    • /
    • pp.63-77
    • /
    • 2019
  • Traditional wastewater research mainly focuses on 1) estimating the amount of waste entering sewage treatment facilities, 2) evaluating the treatment efficiency of sewage facilities, 3) investigating the role of sewage treatment effluent as a point source, and 4) designing and managing sewage treatment facilities. However, since wastewater contains a variety of chemical and biological substances due to the discharge of human excreta and material used for daily living into it, the collective constituents of wastewater are likely a reflection of a community's status. Wastewater-based epidemiology (WBE), an emerging and promising field of study that involves the analysis of substances in wastewater, can be applied to monitor the state of a defined community. WBE provides opportunities for exploiting indicators in wastewater to fulfill various objectives. The data analyzed under WBE are those pertaining to selected natural and anthropogenic substances in wastewater that are a result of the discharge of metabolic excreta, illicit or legal drugs, and infectious pathogens into the wastewater. This paper reviews recent progress in WBE and addresses current challenges in the field. It primarily discusses several representative applications including the investigation of drug consumption across different communities and the management of community disease and health. Finally, it summarizes established indicators for WBE.

Pretreatment and Rapid Detection Methods for Wastewater-Based Epidemiology (하수역학 구축을 위한 시료 전처리 기술과 신속검출기술)

  • Lee Jai-Yeop;Lee Bokjin;Jesmin Akter;Ahn Chang Hyuk;Kim Ilho
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.1
    • /
    • pp.102-110
    • /
    • 2023
  • Wastewater Based Epidemiology (WBE) provides useful information not only on the use of illegal drugs in the community, but also on the presence of hygiene and health products and infectious pathogens in sewage facilities. As a consequence of the SARS-CoV-19 virus epidemic in 2019, monitoring the status of the infection is of utmost importance. SARS-CoV-19 was also detected in sewage, and the number and trend of infections in the community suggest that the application of the WBE system would be useful and appropriate. This study introduces a pre-treatment concentration method including viruses in sewage samples. A total of seven methods which were subdivided into methods for adsorption-extraction, ultra-filtration, PEG precipitation, and ultra-centrifugation, and the results for analyzing the recovery rates were included. Meanwhile, it is necessary to pay attention to rapid detection technologies which analyze infectious pathogens at the site of sewage facilities. These can include ELISA, FTIR, SERS, and biosensor based on the detection principle, and the characteristics, advantages, and disadvantages of each were summarized herein. If rapid detection technologies and accurate quantitative analyses are further developed, the use of sewage mechanics in response to pandemic viruses is expected to expand further.

COVID-19 Surveillance using Wastewater-based Epidemiology in Ulsan (울산지역 하수기반역학을 이용한 코로나19 감시 연구)

  • Gyeongnam Kim;Jaesun Choi;Yeon-Su Lee;Dae-Kyo Kim;Junyoung Park;Young-Min Kim;Youngsun Choi
    • Journal of Food Hygiene and Safety
    • /
    • v.39 no.3
    • /
    • pp.260-265
    • /
    • 2024
  • During the coronavirus 2019 (COVID-19) pandemic, wastewater-based epidemiology was used for surveying infectious diseases. In this study, wastewater surveillance was employed to monitor COVID-19 outbreaks. Wastewater influent samples were collected from four sewage treatment plants in Ulsan (Gulhwa, Yongyeon, Nongso, and Bangeojin) between August 2022 and August 2023. The samples were concentrated using the polyethylene glycol-sodium chloride pretreatment method. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA was extracted and detected using real-time polymerase chain reaction. Next generation sequences was used to perform correlation analysis between SARS-CoV-2 concentrations and COVID-19 cases and for COVID-19 variant analysis. A strong correlation was observed between SARS-CoV-2 concentrations and COVID-19 cases (correlation coefficient, r = 0.914). The COVID-19 variant analysis results were similar to the clinical variant genomes of three epidemics during the study period. In conclusion, monitoring COVID-19 via analyzing wastewater facilitates early recognition and prediction of epidemics.

A Study on the Role of Public Sewage Treatment Facilities using Wastewater-based Epidemiology (하수기반역학을 적용한 공공하수처리시설 역할 재정립)

  • Park Yoonkyung;Yun Sang-Lean;Yoon Younghan;Kim Reeho;Nishimura Fumitake;Sturat L. Simpson;Kim Ilho
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.3
    • /
    • pp.231-239
    • /
    • 2023
  • Public sewage treatment facilities are a necessary infrastructure for public health that treat sewage generated in cities and basin living areas and discharge it into rivers or seas. Recently, the role of public sewage treatment is receiving attention as a place of use of wastewater-based epidemiology (WBE), which analyzes human specific metabolic emissions or biomarkers present in sewage to investigate the environment to which the population is exposed in the water drain. WBE is mainly applied to investigate legal and water-law drug use or to predict and analyze the lifestyle of local residents. WBE has also been applied to predict and analyze the degree of infectious diseases that are prevalent worldwide, such as COVID-19. Since sewage flowing into public sewage treatment facilities includes living information of the population living in the drainage area, it is easy to collect basic data to predict the confirmation and spread of infectious diseases. Therefore, it is necessary to establish a new role of public sewage treatment facilities as an infrastructure necessary for WBE that can obtain information on the confirmation and spread of infectious diseases other than the traditional role of public sewage treatment. In South Korea, the sewerage supply rate is about 95.5% and the number of public sewage treatment facility is 4,209. This means that the infrastructure of sewerage is fully established. However, to successfully drive for WBE , research on monitoring and big-data analysis is needed.

Evaluation of a moving bed biofilm reactor for simultaneous atrazine, carbon and nutrients removal from aquatic environments: Modeling and optimization

  • Derakhshan, Zahra;Ehrampoush, Mohammad Hassan;Mahvi, Amir Hossein;Dehghani, Mansooreh;Faramarzian, Mohammad;Ghaneian, Mohammad Taghi;Mokhtari, Mehdi;Ebrahimi, Ali Asghar;Fallahzadeh, Hossein
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.219-230
    • /
    • 2018
  • The present study examined a moving bed biofilm reactor (MBBR) bioreactor on a laboratory scale for simultaneous removal of atrazine, organic carbon, and nutrients from wastewater. The maximum removal efficiency of atrazine, chemical oxygen demand (COD), total phosphorus (TP) and total nitrogen (TN) were 83.57%, 90.36%, 90.74% and 87.93 respectively. Increasing salinity up to 40 g/L NaCl in influent flow could inhibit atrazine biodegradation process strongly in the MBBR reactor.Results showed that MBBR is so suitable process for efficiently biodegrading of atrazine and nitrogen removal process was based on the simultaneous nitrification-denitrification (SND) process.