• Title/Summary/Keyword: Wasted lubricant

Search Result 3, Processing Time 0.016 seconds

Characteristics of Wasted Lubricant Degradation by Acinebobacter lwoffii 16C-1

  • Kim, Gab-Jung;Lee, In-Soo;Park, Kyeong-Ryang
    • Journal of Life Science
    • /
    • v.9 no.2
    • /
    • pp.76-81
    • /
    • 1999
  • 216 microorganisms which able to degrade wasted lubricant were isolated in the region of contaminated with wated lubricant such automobile repair shops, garages and gas stations in Taejon. Most activated strain among them is selected and used in this research. The microorganism in identified as Acinetobacter lwoffii 16C-1, which shows active growth and hydrocargon utilization withnormal alkane such as tetradecane, hexadecane and octadecane, and do not grow aromatic hydrocargons, cycloalkane, and branched alkane. In addition, A. lwoffii 16C-1 has resistance to heavy metals such as Ba, Li, Cr, and Mn more than 6.4mg/ml, and showed negligible tolerance against antibiotics. Effects of environmental conditions including concentration of wasted lubricnt, pH, NaCl concentration, nitrogen source and phosphate on microorganism growth and emulsification were studied. 2% of wasted lubricant, pH 7.0, 0-1% of NaCl, 0.2% of peptone, and 0.01% of K2HPO4 is turn out to be optimum condition. By the analysis of remaining oils, almost of hydrocarbons added to the media are removed by A. lwoffii 16C-1 at 30$^{\circ}C$ after 2 days of culture, which showed excellent oil degradation characteristics.

Development and Evaluation of Dry Lubricant Recycle Technologies for Wire Drawing Process (와어어 인발용 건식 윤활제의 재생기술 개발 및 평가)

  • Kim, Sun-Ho;Jang, Gyu-Chul;Lee, Chi-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.2
    • /
    • pp.35-40
    • /
    • 2014
  • Wire drawing is aplastic deformation process that produces a wire with a desired diameter by pulling the end of the wire through a die. During the cold wire drawing process, the temperature between the wire and the die bearing is increased. This temperature increase causesenergy consumption increase, bad wire quality, and decreased die life. To reduce friction and avoid high temperature between the wire and the die in the cold wire drawing process, a dry lubricant with soap particles is used. It is not possible to reused the lubricant onceiron oxide is attached to the soap particlesat high pressure die. In this study, recycling technologies for wasted soap particles with processes of crushing, separation, and screening are developed. From the evaluation, the recycling efficiency was found to be 86.97%.

A Study on Transfer Process Design on Hot Forging of Bearing Hub (베어링 허브의 트랜스퍼 열간 단조 공정 설계에 관한 연구)

  • Byun H.S.;Kim B.M.;Ko D.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.993-996
    • /
    • 2005
  • This paper is concerned with transfer process on hot forging of bearing hub. Workers on hot forging have difficulty in working by high temperature and weight workpiece. And In conventional got forging of bearing hub, the material wasted to the flash accounts approximately 10% of the original workpiece. It is need manufacture automation and reduce the cost of forged products. Surface treatment of die and lubricant are investigated from experiment and FE-simulation for analysis of forming simulation. In order to hot forging process design considered flash thickness and blocker geometry and initial temperature of die and billet. This transfer process gave comparatively good results compared with actual products.

  • PDF