• Title/Summary/Keyword: Waste workers

Search Result 140, Processing Time 0.022 seconds

Analysis of Heavy Metal Concentration on Working Clothes for Waste Incinerating Workers (생활폐기물 소각장 작업복의 중금속 분석)

  • Park, Soon-Ja
    • The Korean Journal of Community Living Science
    • /
    • v.18 no.1
    • /
    • pp.39-53
    • /
    • 2007
  • The purpose of this study was to determine the characteristics of an experimental protective clothing material with regard to comfort and isolation from the hazardous heavy metals produced in municipal waste incineration. An analysis was conducted on the total concentrations of heavy metals in some parts such as surface, middle layer, and interior for the treated fabric, and the untreated one, and working clothes. We conclude that the processed fabric with charcoal for working clothes showed the least exposure to heavy metals of the three. Working clothes worn by workers during waste incineration were much more contaminated than the untreated and treated materials. The material of working clothes could be chosen according to the function with regard to its original chemical characteristics, which are the proper results of the dyeing process. The processed fabric material has high degrees of moisture regain, thermal insulation, water vapor penetration, and antibacterial function; consequently, it is much more comfortable to wear. The fabric material proposed in this research contributed much more to blocking heavy metal concentrations (such as Cd, Pb, Cu, Cr, Zn, Mn) than did the fabric of working clothes at present. Consequently, we strongly suggest that the material of working clothes be upgraded by adopting the above-mentioned charcoal-processed fabric. Materials of working clothes must be improved to increase comfort and prevent harmful gas, flying dust, and heavy metals from permeating the fabrics.

  • PDF

Current treatment and disposal practices for medical wastes in Bujumbura, Burundi

  • Niyongabo, Edouard;Jang, Yong-Chul;Kang, Daeseok;Sung, Kijune
    • Environmental Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.211-219
    • /
    • 2019
  • Since improper management practices of solid medical waste (SMW) could potentially result in serious health risks and environmental problems, it is very important to properly treat and dispose of the medical wastes. In this study, current practices of SMW management from storage to final disposal stage in 12 health care facilities (HCFs) of Burundi were investigated using the official government reports. The results showed that 75% and 92% of HCFs used uncovered wheelbarrows and trucks for on-site or off-site SMW transportation, respectively, indicating that most transportation equipment and waste workers are not safely protected. The results also showed that 92.8% of SMW (15,736.4 ton) from all 12 HCFs were inappropriately disposed of through uncontrolled land disposal and incineration. If pharmaceutical wastes and discarded medical plastics (29.5% of SMW) can be separated and treated properly, the treatment costs can be reduced and resource savings can be achieved. Raising awareness of healthcare workers and general public about potential health effects arising from improper SMW management, sufficient financial and human resources for the treatment facilities (especially incinerators), and effective regulations and guidelines for transportation and treatment of SWM are some of the major tasks for safe and sustainable medical waste management in Burundi.

Transport Risk Assessment for On-Road/Sea Transport of Decommissioning Waste of Kori Unit 1

  • Woo Yong Kim;Hyun Woo Song;Jisoo Yoon;Moon Oh Kim
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.2
    • /
    • pp.255-269
    • /
    • 2023
  • Compared to operational wastes, nuclear power plant (NPP) decommissioning wastes are generated in larger quantities within a short time and include diverse types with a wider range of radiation characteristics. Currently used 200 L drums and IP-2 type transport containers are inefficient and restrictive in packaging and transporting decommissioning wastes. Therefore, new packaging and transport containers with greater size, loading weight, and shielding performance have been developed. When transporting radioactive materials, radiological safety should be assessed by reflecting parameters such as the type and quantity of the package, transport route, and transport environment. Thus far, safety evaluations of radioactive waste transport have mainly targeted operational wastes, that have less radioactivity and a smaller amount per transport than decommissioning wastes. Therefore, in this study, the possible radiation effects during the transport from NPP to disposal facilities were evaluated to reflect the characteristics of the newly developed containers and decommissioning wastes. According to the evaluation results, the exposure dose to transport workers, handling workers, and the public was lower than the domestic regulatory limit. In addition, all exposure dose results were confirmed, through sensitivity analysis, to satisfy the evaluation criteria even under circumstances when radioactive materials were released 100% from the container.

Associations between Poorer Mental Health with Work-Related Effort, Reward, and Overcommitment among a Sample of Formal US Solid Waste Workers during the COVID-19 Pandemic

  • Abas Shkembi;Aurora B. Le;Richard L. Neitzel
    • Safety and Health at Work
    • /
    • v.14 no.1
    • /
    • pp.93-99
    • /
    • 2023
  • Background: Effort-reward imbalance (ERI) and overcommitment at work have been associated poorer mental health. However, nonlinear and nonadditive effects have not been investigated previously. Methods: The association between effort, reward, and overcommitment with odds of poorer mental health was examined among a sample of 68 formal United States waste workers (87% male). Traditional, logistic regression and Bayesian Kernel machine regression (BKMR) modeling was conducted. Models controlled for age, education level, race, gender, union status, and physical health status. Results: The traditional, logistic regression found only overcommitment was significantly associated with poorer mental health (IQR increase: OR = 6.7; 95% CI: 1.7 to 25.5) when controlling for effort and reward (or ERI alone). Results from the BKMR showed that a simultaneous IQR increase in higher effort, lower reward, and higher overcommitment was associated with 6.6 (95% CI: 1.7 to 33.4) times significantly higher odds of poorer mental health. An IQR increase in overcommitment was associated with 5.6 (95% CI: 1.6 to 24.9) times significantly higher odds of poorer mental health when controlling for effort and reward. Higher effort and lower reward at work may not always be associated with poorer mental health but rather they may have an inverse, U-shaped relationship with mental health. No interaction between effort, reward, or overcommitment was observed. Conclusion: When taking into the consideration the relationship between effort, reward, and overcommitment, overcommitment may be most indicative of poorer mental health. Organizations should assess their workers' perceptions of overcommitment to target potential areas of improvement to enhance mental health outcomes.

국내원전 액체방사성폐기물계통 설계경험

  • 이병식;김길정
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.43-47
    • /
    • 2003
  • The performance of the Radwaste System is measured in terms of generation of waste volumes, the release of radioactive materials to the environment and the occupational radiation exposure to workers. Based on our design and operating experience from PWR plants, various design goals for liquid radwaste system were developed to improve system performance. It has been making continuous effort to develop the advanced liquid radwaste processing technology for new PWR plants since 1998. The primary goal of this effort was to obtain better performance and to design a more economical liquid radwaste system. This paper describes lesson learned experience from design of the liquid radwaste system in Korea Nuclear Power Plants.

  • PDF

Application case study of change Management program IFI (Integrated Field Innovation) methodology of field workers (현장 작업자 변화관리 프로그램 IFI 방법론의 적용 사례 연구)

  • Park, Young-Cheol;Ree, Sang-Bok
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 2009.10a
    • /
    • pp.370-376
    • /
    • 2009
  • Study of IFI(Integrated Field Innovation) means change of management. This study sill introduces IFI which is a new methodology of change and innovation of workers, and will describe how workers participated in the activities voluntarily. The principle of IFI is that letting employees to find the problems of the sites -anything that makes employees considering as the problem while they are working-and solve those problems through any tools own their own. Workers do not have to waste their time on bounding by unnecessary tools and processes. There are some cases that company "D" has been actually applied the IFI methodology in 2008. By application of IFI methodology to "D" company, which is proved that methodology is good change management program for workers who work in the manufacturing field.

  • PDF

Development of Unmanned Vehicles System for Waste Collection Considering Worker Safety (작업자 안전을 고려한 무인 폐기물 수거차 시스템 개발)

  • Jung, Mingwon;Kim, Sangho;Lee, Sangmoo;Won, Daehee;So, Byungrok;Lee, Sangjun
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.4
    • /
    • pp.477-483
    • /
    • 2022
  • In this paper, we propose waste collection vehicle system with a safety device for worker safety and an autonomous driving function. The steering system is applied as MDPS (Motor Drive Power Steering) system to control the waste collection vehicle of the internal combustion engine. Safety-related errors is prevented through redundancy brake of the integrated system and the control braking system. In order to ensure safety between workers and waste collection vehicles, work guidelines and safety devices for emergency stop in case of danger are applied to vehicles. In addition, this research is conducted on improving the working efficiency through vehicle condition monitoring system and a short-range control system for field test. This research is aimed to secure stability through demonstration and contribute to the industrialization of unmanned waste collection vehicles.