• Title/Summary/Keyword: Waste to Energy Plant

Search Result 286, Processing Time 0.03 seconds

The Study on Optimum Operation Conditions of Ceramic MF Membrane Process in Y Water Treatment Plant (Y 정수장 세라믹막 여과공정 최적 운영인자 평가)

  • You, Sang-Jun;Ahn, Hyo-Won;Park, Sung-Han;Lim, Jae-Lim;Hong, Sung-Chul;Yi, Pyong-In
    • Membrane Journal
    • /
    • v.24 no.3
    • /
    • pp.201-212
    • /
    • 2014
  • This study was performed to discover the optimum operation conditions for the advanced water treatment using the ceramic membrane, introduced the first in the nation at the Y water treatment plant (WTP). The result of investigation to find the optimum operation conditions which can continue preserving the filtration performance as well as satisfying both the economics and the water quality is as follows. In the ordinary water quality condition of the Y WTP, the optimum filtration time(the backwash period), which can minimize the production of backwash waste and preserve the membrane performance was examined to be 4.0 hours on basis of institution capacity ($16,000m^3/day$). Examining the recovery rate of TMP from the chemical cleaning (CIP) discovered that the inorganic contaminants, which cause membrane fouling, such as iron, manganese, aluminum, were removed through the acidic cleaning using citric acid, whereas the membrane recovery rate was found to be low. But, on the other hand, the TMP was recovered to the initial value from the alkali cleaning using the NaOCl. Therefore, the main contaminant causing the fouling was determined to be hydrophilic organic compound( biopolymer). The membrane recovery rate is highly influenced by the temperature of the cleaning chemical. That is, the rate increased with increasing temperature.

Dewaterability Improvement and Volume Reduction of Bio-Solid using Ultrasonic Treatment (Bio-Solid의 탈수성 개선 및 감량화를 위한 초음파 적용)

  • Park, Cheol;Ha, Jun Soo;Kim, Young Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.4019-4023
    • /
    • 2014
  • This study examined the effectiveness of ultrasound on enhancing the dewaterability and volume reduction of bio solids from a waste treatment plant. The test specimen was obtained from a storage tank immediately before the dewatering process at a local treatment plant. The test conditions included the energy levels of ultrasonic waves and treatment time. The tests were undertaken using three types of different treatment processors (7 liter, 1 ton, 7 ton container). The capillary suction time (CST) and the viscosity of sludge, which is one of the influencing factors for dewaterbility, were obtained under various test conditions. The results showed that ultrasound increases the CST of the raw specimens, whereas a significant reduction (20 % of the maximum value) of CST occurred in the sample with ultrasound and flocculent. The decrease in viscosity reached 40 % of the maximum value. A centrifugal test was performed to examine the characteristics of the sludge settlement. The settling rate and time required to reach the final values were both enhanced by the ultrasonic energy. An ultrasonic treatment is potentially useful tool for reducing the amount of released sludge. To examine the possible use of field application, the real scale sonic processor was designed and operated. The results were similar (50 % of the maximum value) to those of laboratory experiments.

The Effects of the Residual Ba and Zr on the Acid Pickling in Case of the Recovering of Zr in Pickling Waste Acid through the BaF2 Precipitation Process (BaF2 침전 공정을 통한 폐산세정액 내 Zr 회수 시 잔존 Ba 및 Zr이 산세정에 미치는 영향)

  • An, Chang Mo;Choi, Jeong Hun;Han, Seul Ki;Park, Chul Ho;Kahng, Jong Won;Lee, Young Jun;Lee, Jong Hyeon
    • Resources Recycling
    • /
    • v.26 no.5
    • /
    • pp.97-104
    • /
    • 2017
  • Nuclear fuel cladding tubes are manufactured through pilgering and the annealing process. In order to remove the oxidized layer and impurities on the surface of the tube, a pickling process is required. Zirconium (Zr) is dissolved in a HF and $HNO_3$ acid mixture during the process and the pickling waste acid, including the dissolved Zr, is completely discarded after neutralization. This study observes the effects of the residual impurities (Ba) in the pickling solution regenerated from the $BaF_2$ precipitation process on the waste pickling solution. In addition, the concentration of Ba and Zr for the actual nuclear fuel cladding tube process was optimized. The regenerated pickling solution was tested through a pilot plant pickling process device that simulates the commercial pickling process of nuclear fuel cladding tubes, and the pickling efficiency was analyzed through AFM analysis of the roughness of the cladding tube surface.

Uranium Recovery from Nuclear Fuel Powder Conversion Plant Filtrate and its Thermal Decomposition Characteristics (핵연료분말 제조공정에서 발생된 여액으로부터 우라늄 회수 및 회수된 우라늄 화합물의 열분해 특성)

  • Jeong, Kyung-Chai;Jeong, Ji-Young;Kim, Byung-Ho;Kim, Tae-Joon;Choi, Jong-Hyeun
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.2
    • /
    • pp.204-209
    • /
    • 2002
  • In this study, $UO_4{\cdot}2NH_4F$, the precipitates which has low solubility, was obtained by chemical precipitation method to recover and reuse the trace uranium from the liquid waste producing in AUC process and for this compound it was characterized by means of chemical analysis, TG-DTA, XRD and FT-IR analyses. This compound was analyzed as $UO_4{\cdot}2NH_4F$ and shape of this precipitate was hexagonal type, having the size of 2∼3 ${\mu}m$. Also, the intermediates were obtained as $UO_4F,\;UO_4,\;UO_3,\;and\;U_3O_8$ by the thermal decomposition over the temperature of 220, 310, 515 and 640$^{\circ}C$, respectively. It is concluded that under the condition of a constant heating rate of 5$^{\circ}C$/min in air atmosphere range of between room temperature and 800$^{\circ}C$, thermal decomposition reaction mechanism of $UO_4{\cdot}2NH_4F$ is as follow; $UO_4{\cdot}2NH_4F{\rightarrow}UO_4F{\rightarrow}UO_4{\rightarrow}UO_3{\rightarrow}U_3O_8$.

Trial Burns of Low-Level Radioactive Wastes the Demonstration-Scale Incineration Plant at KAERI (한국원자력 연구소 실증소각시설에서의 저준위방사성폐기물 시험소각)

  • Yang, Hee-Chul;Kim, In-Tae;Kim, Jeong-Guk;Kim, Joon-Hyung;Seo, Yong-Chil
    • Nuclear Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.767-774
    • /
    • 1995
  • Behavior of radionuclides such $^{60}$ Co, $^{54}$ Mn and $^{137}$ Cs in the incineration Process was Studied by trial burns of simulated wastes with radio-isotope tracers. Behavior of nonvolatiles, $^{60}$ Co and $^{54}$ Mn, was similar to that of particulate matters in the process. Decontamination factors(DFs) for $^{60}$ Co and $^{54}$ Mn were 4.7$\times$10$^{5}$ and 6.2$\times$10$^{5}$ , respectively. Behavior of semivolatile radio-isotope, $^{137}$ Cs, was temperature dependent. DFs for $^{l37}$Cs at In different incineration temperature of 85$0^{\circ}C$ and $700^{\circ}C$ were 2.8$\times$10$^3$ and 2.6$\times$10$^4$, respectively. Trial bums of dry active waste(DAW) transported from nuclear power station(NPS) Kori 3,4 were also performed. DF for gross $\beta$/${\gamma}$ radioactivity in DAW was 1.1$\times$10$^{5}$ . This was a little higher than the estimated value, which was calculated from the tracer test results and nuclides distribution in the DAW. Average emission concentration was 0.019 Bq/N $m^3$, which could meet the maximal permissible concentration(MPC) in stack emission.n.

  • PDF

Anaerobic Organic Wastewater Treatment and Energy Regeneration by Utilizing E-PFR System (E-PER 반응기를 이용한 유기성 폐기물의 혐기성 처리와 재생에너지 생산에 관한 연구)

  • Kim, Burmshik;Choi, Hong-Bok;Lee, Jae-Ki;Park, Joo Hyung;Ji, Duk Gi;Choi, Eun-Ju
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.2
    • /
    • pp.57-65
    • /
    • 2008
  • Wastewater containing strong organic matter is very difficult to treat by utilizing general sewage treatment plant. but the wastewater is adequate to generate biomass energy (bio-gas; methane gas) by utilizing anaerobic digestion. EcoDays Plug Flow Reactor (E-PFR), which was already proved as an excellent aerobic wastewater treatment reactor, was adapted for anaerobic food wastewater digestion. This research was performed to improve the efficiency of bio-gas production and to optimize anaerobic wastewater treatment system. Food wastewater from N food waste treatment plant was applied for the pilot scale experiments. The results indicated that the efficiency of anaerobic wastewater treatment and the volume of bio-gas were increased by applying E-PFR to anaerobic digestion. The structural characteristics of E-PFR can cause the high efficiency of anaerobic treatment processes. The unique structure of E-PFR is a diaphragm dividing vertical hydraulic multi-stages and the inversely protruded fluid transfer tubes on each diaphragm. The unique structure of E-PFR can make gas hold-up space at the top part of each stage in the reactor. Also, E-PFR can contain relatively high MLSS concentration in lower stage by vertical up-flow of wastewater. This hydraulic flow can cause high buffering capacity against shock load from the wastewater in the reactor, resulting in stable pH (7.0~8.0), relatively higher wastewater treatment efficiency, and larger volume of bio-gas generation. In addition, relatively longer solid retention time (SRT) in the reactor can increase organic matter degradation and bio-gas production efficiency. These characteristics in the reactor can be regarded as "ideal" anaerobic wastewater treatment conditions. Anaerobic wastewater treatment plant design factor can be assessed for having 70 % of methane gas content, and better bio-gas yielding and stable treatment efficiency based on the results of this research. For example, inner circulation with generated bio-gas in the reactor and better mixing conditions by improving fluid transfer tube structure can be used for achieving better bio-gas yielding efficiency. This research results can be used for acquiring better improved regenerated energy system.

  • PDF

Simulation Analysis of Sludge Disposal and Volatile Fatty Acids Production from Gravity Pressure Reactor via Wet Air Oxidation (습식산화반응을 통한 중력식반응기로부터의 슬러지 처리 및 유기산 생산 공정모사)

  • Park, Gwon Woo;Seo, Tae Wan;Lee, Hong-Cheol;Hwang, In-Ju
    • Korean Chemical Engineering Research
    • /
    • v.54 no.2
    • /
    • pp.248-254
    • /
    • 2016
  • Efficacious wastewater treatment is essential for increasing sewage sludge volume and implementing strict environmental regulations. The operation cost of sludge treatment amounts up to 50% of the total costs for wastewater treatment plants, therefore, an economical sludge destruction method is crucially needed. Amid several destruction methods, wet air oxidation (WAO) can efficiently treat wastewater containing organic pollutants. It can be used not only for sludge destruction but also for useful by-product production. Volatile fatty acids (VFAs), one of many byproducts, is considered to be an important precursor of biofuel and chemical materials. Its high reaction condition has instituted the study of gravity pressure reactor (GPR) for an economical process of WAO to reduce operation cost. Simulation of subcritical condition was conducted using Aspen Plus with predictive Soave-Redlich-Kwong (PSRK) equation of state. Conjointly, simulation analysis for GPR depth, oxidizer type, sludge flow rate and oxidizer injection position was carried out. At GPR depth of 1000m and flow rate of 2 ton/h, the conversion and yield of VFAs were 92.02% and 0.17g/g, respectively.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2015 (설비공학회 분야의 최근 연구 동향 : 2015년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.6
    • /
    • pp.256-268
    • /
    • 2016
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2015. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering were carried out in the areas of flow, heat and mass transfer, cooling and heating, and air-conditioning, the renewable energy system and the flow inside building rooms. Research issues dealing with air-conditioning machines and fire and exhausting smoke were reduced. CFD seems to be spreading to more research areas. (2) Research works on heat transfer area were carried out in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the economic analysis of GHG emission, micro channel heat exchanger, effect of rib angle on thermal performance, the airside performance of fin-and-tube heat exchangers, theoretical analysis of a rotary heat exchanger, heat exchanger in a cryogenic environment, the performance of a cross-flow-type, indirect evaporative cooler made of paper/plastic film. In the area of pool boiling and condensing, the bubble jet loop heat pipe was studied. In the area of industrial heat exchangers, researches were performed on fin-tube heat exchanger, KSTAR PFC and vacuum vessel at baking phase, the performance of small-sized dehumidification rotor, design of gas-injection port of an asymmetric scroll compressor, effect of slot discharge-angle change on exhaust efficiency of range hood system with air curtain. (3) In the field of refrigeration, various studies were carried in the categories of refrigeration cycle, alternative refrigeration/energy system, system control. In the refrigeration cycle category, a cold-climate heat pump system, $CO_2$ cascade systems, ejector cycles and a PCM-based continuous heating system were investigated. In the alternative refrigeration/energy system category, a polymer adsorption heat pump, an alcohol absorption heat pump and a desiccant-based hybrid refrigeration system were investigated. In the system control category, turbo-refrigerator capacity controls and an absorption chiller fault diagnostics were investigated. (4) In building mechanical system research fields, eighteen studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, and renewable energies, piping in the buildings. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the user and location awareness technology applied dimming lighting control system, the lighting performance evaluation for light-shelves, the improvement evaluation of air quality through analysis of ventilation efficiency and the evaluation of airtightness of sliding and LS window systems. The subjects of building energy were worked on the energy saving estimation of existing buildings, the developing model to predict heating energy usage in domestic city area and the performance evaluation of cooling applied with economizer control. The studies were also performed related to the experimental measurement of weight variation and thermal conductivity in polyurethane foam, the development of flame spread prevention system for sandwich panels, the utilization of heat from waste-incineration facility in large-scale horticultural facilities.

Performance Characteristics of Organic Rankine Cycle Using Medium Temperature Waste Heat with Different Working Fluids (중온 배기열을 이용한 유기랭킨사이클 작동유체별 성능특성)

  • Kwon, Dong-Uk;Heo, Ki-Moo;Yoon, Sung-Hoon;Moon, Yoon-Jae;Yoo, Ho-Sun;Lee, Jae-Heon
    • Plant Journal
    • /
    • v.10 no.2
    • /
    • pp.38-47
    • /
    • 2014
  • Renewable Portfolio Standards was introduced into the system in Korea in 2012. Interest in the unutilized and renewable energy sources is increasing. and these being actively investigated. An organic rankine cycle has emerged as an alternative in order to take advantage of bio-gas engine heat of sewage treatment plants whose capacity is 1500 kW. The organic rankine cycle power system was simulated by a simulator which is a commercial program of power plant design and performance analysis. The biogas engine is operated by $460^{\circ}C$ and 2.7 kg/s flow rate in the sewage treatment plant. Working fluids(R-601a, R-123, R-245fa) are selected to use in ORC power system in this temperature range. It was the isopentane that is the best performance among three working fluids. It could be obtained net power of 163.1 kW and efficiency of 13.66% from isopentane in the simulation.

  • PDF

The Technology Development Trends of Supercritical CO2 Power Generation (초임계 CO2 발전 기술개발 동향)

  • Kim, Beom-Ju
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.4
    • /
    • pp.531-536
    • /
    • 2016
  • The worldwide research and development for high-efficiency power generation system is progressing steadily because of the growing demand for reducing greenhouse gas emissions. Many countries have spurred the research and development of supercritical $CO_2$ power generation technology since 2000 because it has the advantage of compactness, efficiency, and diversity. Supercritical $CO_2$ power generation system can be classified into an indirect heating type and a direct heating type. As of now, most studies have concentrated on the development of indirect type supercritical $CO_2$ power generation system. In the United States, NREL(National Renewable Energy Lab.) is developing supercritical $CO_2$ power generation system for Concentrating Solar Power. In addition, U.S. DOE(Department of Energy) also plans to start investing in the development of the supercritical $CO_2$ power generation system for coal-fired thermal power plant this year. GE is developing not only 10MW supercritical $CO_2$ power generation turbomachinery but also the conceptual design of 50MW and 450MW supercritical $CO_2$ power generation turbomachinery. In Korea, the Korean Atomic Energy Research Institute has constructed the supercritical $CO_2$ power generation test facility. Moreover, KEPRI(Korea Electric Power Research Institute) is developing a 2MW-class supercritical $CO_2$ power generation system using diesel and gas engine waste heat with Hyundai Heavy Industries.