• Title/Summary/Keyword: Waste textile

Search Result 114, Processing Time 0.027 seconds

Color Removal from Dyeing Effluent using Activated Carbons Produced from Various Indigenous Biomass

  • Islam, Md. Shahidul;Das, Ajoy Kumar;Kim, In-Kyo;Yeum, Jeong-Hyun
    • Textile Coloration and Finishing
    • /
    • v.22 no.2
    • /
    • pp.94-100
    • /
    • 2010
  • Colored compounds adsorption from the textile dyeing effluents on activated carbons produced from various indigenous vegetable sources by zinc chloride activation is studied. The most important parameters in chemical activation were found to be the chemical ratio of $ZnCl_2$ to feed (3:1), carbonization temperature (460-470 $^{\circ}C$) and time of activation (75 min). The absorbance at 511 nm (red effluent) and 615 nm (blue effluent) are used for estimation of color. It is established that at optimum temperature ($50^{\circ}C$), time of contact (30-40 min) and adsorbent loading (2 g/L), activated carbons developed from rain tree (Samanea saman) saw dust and blackberry (Randia formosa) tree saw dust showed great capability to remove color materials from the effluents. It is observed that adsorption of reactive dyes by all types of activated carbons is more than that of disperse dyes. It is explained that because of its acidic nature the activated carbon can adsorb better reactive dye particles containing large number of nitrogen sites and $-SO_3Na$ group in their structure. The use of activated carbons from the indigenous biomass would be economical, because saw dusts are readily available waste worldwide.

Characteristics of A-POC in Issey Miyake Collection (이세이 미야케 컬렉션에 나타난 A-POC의 특성에 관한연구)

  • Joo, Sung Kum;Jeong, Jae Chul
    • Fashion & Textile Research Journal
    • /
    • v.19 no.3
    • /
    • pp.259-266
    • /
    • 2017
  • In a contemporary fashion along with the advance of high technology, development of a new material is being increasingly emphasized and the need of creative convergence using a computer is being expanded. As a global designer who appeared through association between Japan and the West, Issey Miyake has been continually pursuing a new challenge and a solution using high technology, leading the globalization of Japanese fashion. This research aims at examining design characteristics of Issey Miyake collection's A-POC showing a new paradigm, that is, an innovative clothing manufacture system to input information on materials, colors and shapes into a textile machine based on the computer program and manufacture a cylindrical fabric for completion of seamless clothing without sewing or cutting. A-POC is evolving continually through the development of new materials including recycled fibers and organics together with diversification of processing technology. Besides, it shows design characteristics including an integrated manufacturing method, autonomy for customers' selection, practicality for comfortable wearing by the majority, environment friendly idea to reduce waste of fabrics and materials and a new presentation through convergence of exhibition concepts of modern art. This research on Issey Miyake's A-POC characteristics is expected to present a role of fashion designers in a new design idea and paradigm of contemporary clothing using high technology.

Strategic focus for substantial rewards

  • Hann, Michael A.
    • The Research Journal of the Costume Culture
    • /
    • v.27 no.1
    • /
    • pp.57-63
    • /
    • 2019
  • Due principally to the desire to seek lower production costs, the bulk of the world's textile and clothing manufacture migrated to low-cost zones, mainly outside Europe, over the course of the late-twentieth century. In the early-twenty-first century, fast fashion became a dominant force worldwide, with 'Western' retail buyers hunting cheaper deals from clothing manufacturers (mainly in Asia), and with occasional disasters not changing matters beyond the duration of a fashion season. Progressively, seams became narrower, cheaper raw materials were used and durability was no longer an aim. Why bother to do otherwise? This was what the 'Western' consumer wanted: fashion to be worn only a few times and then discarded, despite the fact that vast amounts of human, technological and financial resources were wasted in such a quest. By the end of the second decade of the twenty-first century, the production of textile and clothing products continued to contribute substantially to global warming. This paper reviews briefly the current conditions of manufacture, and argues that the research agenda should be focused on addressing the implications of a progressively changed focus, not on fast-fashion products, but instead on the production of products with greater durability. Meanwhile 'Western' consumers need to turn away from fast fashion and realise that waste is bad for their economy and their society. It is argued further, that after a period of re-adjustment, substantial financial rewards await the national textile and clothing industries that undergo such a turn around.

A Study on the Zero Waste Fashion Design in Conscious Fashion Perspective from the New Normal Era (뉴노멀 시대의 컨셔스 패션에 나타난 제로웨이스트 패션디자인 연구)

  • Dal A Lee;Chan Ho Kim
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.25 no.4
    • /
    • pp.59-76
    • /
    • 2023
  • The COVID-19 pandemic has brought about environmental severity and new social, economic, and cultural changes. Conscious fashion, which is oriented to sustainable and valuable consumption, has become a trend to consume products produced using eco-friendly and ethical processes, from the selection of the product materials to the manufacturing process. The purpose of this study is to identify the concepts and characteristics of conscious fashion and zero waste, and to explore design trends of zero wastein the new normal era of conscious fashion through the analysis of various cases. The research method is a literature review on conscious fashion based on relevant professional and academic books and articles, designer collections, and campaigns from 2010 to the present, when conscious fashion as eco-friendliness and sustainable fashion became a trend. The concept and characteristics of conscious fashion were examined them in terms of environmental, ethical, social, and cultural aspects and the concept and characteristics of zero waste through previous studies and case analysis. Through this, the trends of zero-waste design in conscious fashion were categorized into: first, an eco-friendly design orientation that utilizes reuse and reduce methods of clothing and fabric; second, a variable design orientation that practices zero waste designs by using diversity of patterns through deconstruction, disassembly, and various cutting methods. Third, long-term circulation of design through the recycling of resources by second-hand trade, the utilization of stock clothing, resale, and availability of eco-friendly materials through the development of new technologies. As an active practice for the sustainable fashion industry expands, it is expected that continuous research will be conducted as a future core value to realize the possibility of long-term circular zero-waste design through social responsibility and conscious recycling, reuse, and reproduction.

Isolation and Identification of Fungi for Decolorization of Synthetic Dyes

  • Lee, Jang-Hoon;Nam, Youn-Ku;Kwon, Hyuk-Ku
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2005.12a
    • /
    • pp.95-102
    • /
    • 2005
  • For decolorization of synthetic dyes, Isolate fungi were investigated for the decolorization of 8 industrial dyes. One fungus isolated from textile wastewater collected from Banweol industrial complex, Korea showed excellent ability for removing synthetic dyes. Internal Transcribed Spacers (ITS) sequencing result was confirmed as the new Basidomycetes species. HUE05-1 The optimal decolorizaton conditions were pH5, 30$^{\circ}C$ and aerobic condition. HUE05-1 was completely decolorized all dyes in both solid and liquid condition. The result is decolorization effect at Reactive Orange 16; 97.12%, Reactive Blue 19; 92.09%, Reactive Blue 49; 97.04%, Reactive Yellow 145; 95.53%, Acid Orange 10; 99.18%, Acid Violet 43; 98.73%, Acid Blue 350; 94.71%, Disperse Blue 106; 90.07%.

  • PDF

Development of Polymeric Adsorbents for the Treatment of Coloured Waste Waters and it's Application (I) - Carboxymethylated Cellulosic Adsorbent System - (유색폐수처리를 위한 고분자흡착제의 개발과 처리수의 재사용(I) - Carboxymethyl화 셀룰로오스흡착제 -)

  • Soo Min Park
    • Textile Coloration and Finishing
    • /
    • v.4 no.2
    • /
    • pp.84-88
    • /
    • 1992
  • 셀룰로오스 펄프에 폴리비닐알코올의 블랜드, 가교, 및 카복시메칠화한 아니온성 셀룰로오스계 고분자 흡착제에 대한 모델 카치온 염료, C.I. Basic Red 18의 흡착 및 탈색 성능을 수용액계(pH 4.2)에서 검토하였다. 아니온성 셀룰로오스 고분자 흡착제의 카치온 모델 염료의 흡착등온성은 저농도 영역에서 Sigmoidal 형을 나타내었고 Donnan 흡착 모델 기구로 해석하였다. 하전기 도입에 따라 염료의 흡착능은 증가하였으며 이 흡착능력은 Sodium이온의 첨가에 의하여 저하하였다. 또 아니온 셀룰로오스계 흡착제에 의한 모델 염료의 배수 탈색율은 크게 증가하였으며 입상활성탄보다 우수한 탈색능력을 나타내었다.

  • PDF

Novel Recycling Technology of Ultra-fine Fibrous Materials

  • Kim, Seong-Hun;Oh, Kyung-Wha;Lee, Shin-Kyung
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.209-209
    • /
    • 2006
  • Ultra-fine fibers are spun by expensive fiber spinning technology using special spinnerets. Ultra-fine fibrous materials have attracted considerable attentions because of their potential applications as high performance wiping cloths, water absorbent sound proofing materials and moisture transfer sporting good. However, production expense of ultra-fine fibers is 5 to 7 times higher than general textile materials. The objective of this research is to develop cost-effective recycling process to produce multi-functional ultra-fine fibrous material in terms of the development of garnetting and carding machines for ultra-fine fibrous material waste and scrap. The efficiency of sound absorption for the recycled polyester nonwoven increased with decreasing length and thickness of component fibers, which was attributed to the reduction of air permeability. It is expected that high value and cost-effective textile products are developed using ultra-fine fibrous wastes and that sound proofing material and oil absorbent f

  • PDF

Treatment of a dye solophenyle 4GE by coupling electrocoagulation / nanofiltration

  • Djahida, Zerrouki;Amel, Benhadji;Mourad, Taleb Ahmed;Hayet, Djelal;Rachida, Maachi
    • Membrane and Water Treatment
    • /
    • v.5 no.4
    • /
    • pp.251-263
    • /
    • 2014
  • The study contributes in the treatment of waste generated by the textile complex cotton of Draa Ben Khedda, Algeria. The azo dye "Direct Red Solophenyle 4GE" represents the base particle of the discharges and electrocoagulation with nanofiltration are used as a means of treatment. The solar photovoltaic is suitable for electrochemical process to reduce the energy cost. Several study parameters are considered in this work. The electrocoagulation batch gives the best reduction 37% for a dye concentration of 7.21 mg/L ($[NaCl]_{added}$=1g/L; $j=25.2mA/cm^2$). Coupling methods (electrocoagulation-nonofiltration) gives a complete discoloration rejecting concentration 52.4 mg/L (pHi = 7.6, $[NaCl]_{added}$=3g/L, $j=2.13mA/cm^2$). The result shows the coupling efficiency with a reduced amount of resulting slurry at the end of treatment.

Study on the Content Characteristics of Waste Containing Brominated Flame Retardant (브롬화난연제 함유 폐기물의 함량 특성 연구)

  • Yeon, Jin-Mo;Kim, Woo-Il;Hwang, Dong-Gun;Cho, Na-Hyeon;Kim, Ki-Heon;Lee, Young-Ki
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.8
    • /
    • pp.692-700
    • /
    • 2018
  • In this study, the results of PBDEs and HBCDs of the products and waste that contain BFRs such as domestic electronic products, automobiles and textile products were compared with international management standards, and their excess rates were calculated. Deca-BDE was detected among the PBDEs in TV rear cover plastics, car seats, automotive interior plastics, and automobile shredding residues of products and waste containing BFRs. The comparison with Basel Convention management standards (1,000 mg/kg) for PBDE-containing wastes (4 types in total) shows that the excess rate of all samples was less than 1.5%. The estimated excess rate compared to the EU and Basel convention management standards (1,000 mg/kg) for PBDEs (4 species + deca-BDE) and TV rear cover plastics was 37.5% (30 of 80 samples exceeded the standards). The estimated excess rate compared to the Basel convention management standards (1,000 mg/kg) for HBCD, building materials products and waste was 15.7% (17 of 108 samples exceeded the standards). In the case of PBDEs, it is necessary to remove only the rear cover of CRT TV among the electric and electronic products and treat it in the flame retardant treatment facility to improve the recycling collection system. In the case of HBCD, it is necessary to appropriately dispose of the recycled materials, heat insulation materials, TV plastics, and styrofoam in marine fishery among construction materials and restrict the use as recycled raw materials.

Utilization of Food Waste Extract as an Eco-friendly Biocatalyst for Indigo Reduction (식품 폐기물을 이용한 친환경 생촉매의 발굴과 인디고 환원에 응용)

  • Son, Kunghee;Yoo, Dong Il;Shin, Younsook
    • Textile Coloration and Finishing
    • /
    • v.32 no.4
    • /
    • pp.193-198
    • /
    • 2020
  • In this study, the validity of extracts from food waste as biocatalyst for indigo reduction was examined. Dried food wastes such as apple peel and corn waste were water-extracted and freeze-dried. The reducing power of extracts for indigo was evaluated by the oxidation-reduction potential(ORP) measurement of reduction bath and color strength(K/S value) of the fabrics dyed in the indigo reduction bath. Total sugar contents of the apple peel and corn waste extracts were 60.56% and 62.36%, respectively. Antioxidant activity was 64.78% for the extract of apple peel and 7.96% for the extract of corn waste. Indigo reduction took place quickly with both extracts, and maximum color strength was obtained up to 15.91 and 12.11 within 1-3 days, respectively. The oxidation-reduction potential of reduction bath was stabilized in the range of -500 ~ -620 mV according to the kinds of food waste and the extract concentration. At higher concentration of the extracts, reduction power was maintained for longer time and stronger color strength was obtained. Compared to sodium dithionite, the reducing power of the studied extracts was lower, but the reduction stability was superior to it. The studied extracts were effective biocatalyst as biodegradable and safe alternatives to sodium dithionite for indigo reduction.