• 제목/요약/키워드: Waste sludge water

검색결과 262건 처리시간 0.021초

전기분해를 이용한 하수 슬러지 감량 (Volume Reduction of Waste Water Sludge using Electrolysis)

  • 이병헌;방명환;김건하
    • 한국물환경학회지
    • /
    • 제22권2호
    • /
    • pp.264-270
    • /
    • 2006
  • In this research, volume reduction of activated sludge using electrolysis was studied to find an optimum condition using lab scale experiments. Wasted sludge was treated by electrolysis with controlling current density, chloride concentration, electrode distance, and reaction time. Volume of return sludge was reduced by 9.79% in average while maximum was 16.7%. Sludge volume reduction efficiency was affected by current density and reaction time. It was reversely proportional to the electrode distance. Especially current density was effective on the system performance significantly. Electric conductivity, salinity and COD were increased by electrolysis implying sludge disintegrated and converted to COD in part. An empirical equation for total solid removal efficiency by electrolysis was proposed by multiple linear regression analysis as: $TS_{rem}$(%) = 5.534 ${\times}$ current density (A/l) + 0.178 ${\times}$ reaction time (m) + 2.758.

호기성 호열미생물에 의한 하수슬러지 감량화 효율에 관한 연구 (A Study on Volume Reduction of Waste Sludge by Aerobic Thermophilic Bacteria)

  • 배윤선;김순영;남덕현;박철휘;김진수
    • 상하수도학회지
    • /
    • 제19권4호
    • /
    • pp.497-505
    • /
    • 2005
  • Domestic Sewage Treatment Plants are mostly based on biological treatment, in which large amounts of excess sludge are generated and occupy about 40 ~ 60% of the total sewage treatment costs. Several methods for sludge treatment has been so far reported as upgrading biodegradation of sludge; heat treatment, chemical treatment, including thermo-alkali and ozone, mechanical treatment including ultrasonic pulverization. But, it has a limitation in case of reducing the amount of excess sludge which are already producted. In this study, application of excess sludge reduction process using thermophilic aerobic bacteria for activated sludge was examined. The research was carried out two different stage. one for a biological wastewater treatment and the other for a thermophilic aerobic solubilization of the waste sludge. A portion of excess sludge from the wastewater treatment step was into the thermophilic aerobic sludge solubilization reactor, in which the injected sludge was solubilized by thermophilic aerobic bacteria. The solubilized sludge was returned to the aeration tank in the wastewater treatment step for its further degradation. Sludge solubilization reactor was operated at $63{\pm}2^{\circ}C$ with hydraulic retention time(HRT) of 1.5 ~ 1.7 day. Control group was operated with activated sludge process(AS) and experiment group was operated with three conditions(RUN 1, RUN 2, RUN3). RUN 1 was operated with AS without sludge solubilization reactor. RUN 2 were operated with AS with sludge solubilization reactor to examine correlation between sludge circulation ratio and sludge reduction ratio by setting up sludge circulation ratio to 3. RUN 3 was operated with sludge circulation ratio of 3 and MLSS concentration of 1,700~2,000mg/L to examine optimum operation condition. The quantity of excess sludge production was reduced sharply and in operation of RUN 3, sludge The quantity of excess sludge production was reduced sharply and in operation of RUN 3, sludge solubilization ratio and sludge reduction ratio were 53. 7%, 95.2% respectively. After steady state operation, average concentration of TBOD, SBOD, $TCOD_{Cr}$, $SCOD_{Cr}$, TSS, VSS, T-N, T-P of effluent were 4.5, 1.7, 27 .8, 13.8, 8.1, 6.2, 15.1, 1.8mg/L in the control group and were 5.6, 2.0, 28.6, 19.1, 9.7, 7.2, 16.1, 2.0mg/L in the experimental group respectively. They were appropriate to effluent standard of Sewage Treatment Plants.

Chemical Treatment of Municipal Wastewater Using Alum Sludge

  • Shin, Dae-Yewn;Moon, Ok-Ran;Yoon, Mi-Ran;Ro, Chang-Wha;Kang, Gong-Unn;Moon, Deok-Hyn;Dermatas, Dimitris
    • 한국환경보건학회:학술대회논문집
    • /
    • 한국환경보건학회 2005년도 Proceedings of KSEH.Minamata Forum
    • /
    • pp.51-53
    • /
    • 2005
  • Disposal of waterwork sludge is important problem in WTP(water treatment plant). Purpose of this study is treated municipal waste water chemically using sludge that is produced in waterwork plant by link to reutilize waterwork sludge. Municipal waste water that use in an experiment used is produced at C university, and is SS 220 mg/L, BOD 145 mg/L, COD 160 mg/L, T-N 52 mg/L and T-P 2.6 mg/L. Used Alum, polymer coagulant and coagulant aid (diatomite, powered activated carbon) as CaO, coagulant as alkaline aid by chemical treatment medicine. In case of does slow speed agitation and stations after pours waterwork sludge in sewage and alkaline aid and coagulant at rapidly mixing the colloidal creation speed is fast and fine colloids concentration was high but settling time is shortened a little and removal rate of pollutant improved by $60{\sim}99%$.

  • PDF

도시발생 폐기물을 저공해 열처리 생산한 환경친화형 인공배지의 작물재배이용기법 개발 (Development of Crop Cultivation Technique Using Environment-friendly Artificial Media Using Urban Waste)

  • 김선주;양용석
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 1998년도 학술발표회 발표논문집
    • /
    • pp.490-499
    • /
    • 1998
  • This study was initiated to investigate the applicability of sludge from water or waste water treatment on the crop cultivation. Sludge is generated in the process of water and wastewater treatment process in large quantity. The sludge can cause many environmental problems. we have a many available treatment methods of sludge However, these methods still shortcomings and are not. The composition of typical municipal sludge contains organics and inorganics. The organics components are normally burnt in high temperature and mainly inorganics components are left after thermal treatment process. For the production of artificial media, chabazite was used as additive, and the mixed material was thermally treated in the firing kiln at 800~1,10$0^{\circ}C$ for about 10 minutes. The physical and chemical characteristics of artificial media were analyzed and it showed that the artificial media could be used as a media for plants and soil conditioner for farmland. The concentrations of the toxic heavy metals in the media were lower then those in the soil quality standard for farmland. This study illustrated that the artificial media production process, and introduced how to produce it's possible application as a media for Plant growth.

  • PDF

Treatment and Disposal of tow-level Radioactive Sludges by Solar Evaporation

  • Lee, Sang-Hoon
    • Nuclear Engineering and Technology
    • /
    • 제4권3호
    • /
    • pp.194-202
    • /
    • 1972
  • 방사성 폐액처리에서 나오는 방사성 Sludge의 Solar energy에 의한 고화 처리방법은 가장 효과적이고 경제적인 처리방법의 하나이다. 본연구를 통해서 Sludge의 고화처리는 3月부터 8月사이가 가장 적정기이고, 또 Mass-transfer방법에 의해 증발량 추정에 대한 실험식을 유도하였다.

  • PDF

-기술정보- 연속유입 KIDEA에서 공정변화에 따른 인제거 및 탈수 함수율 상관관계 (The evaluation of T-P removal and dewaterability under the operation change in KIDEA process)

  • 연승준;허희승
    • 상하수도학회지
    • /
    • 제22권2호
    • /
    • pp.179-182
    • /
    • 2008
  • The KIDEA process, occurred in single reactor, is operated by three consequential steps, i.e., aerobic, settling, and discharge while introducing wastewater into the bottom of reactor continuously. It could accomplish biological oxidation (BOD), nitrification, denitrification (T-N), phosphate removal (T-P), and solid separation (SS) through the operational mode mentioned. Especially, this system has removed the T-P by wasting certain amount of sludge at the end of aeration phase during 5~10 minutes and not returned the activated sludge into the reactor, that is, no RAS (Return Activated Sludge). All running mode and instrumentation were controlled by the PLC equipment automatically. In this study, therefore, we have evaluated T-P removal efficiency and moisture content (MC) performance under the different excess sludge wasting mode. T-P track study and MC with TS concentration were analyzed during aerobic and settling phase. It has revealed that there was no significant difference of released T-P concentration between the first case which waste the sludge at the end of aerobic phase (0.2mg/L) and the second case which waste the sludge at 40 min of settling phase (0.25mg/L). Also, dewatering duration and MC have decreased 1.7% when TS concentration was increased from 0.31% to 0.5% during aerobic condition. Hence, it has concluded the system performance was less influenced by the operation time change of PLC program.

The Processing of Livestock Waste Through the Use of Activated Sludge - Treatment with Intermittent Aeration Process -

  • Osada, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제13권5호
    • /
    • pp.698-701
    • /
    • 2000
  • To prevent surface and underground water pollution, wastewater treatment is essential. Four bench-scale activated sludge units (10 L operational volumes) were operated at 5, 10 and $20^{\circ}C$ for evaluation of treatment efficiencies with typical wastewater from swine housing. The units were set for a 24-hour cycle. As compared to the conventional process, high removal efficiencies for organic substances, nitrogen and phosphorus in swine wastewater were obtained simultaneously with an intermittent aeration process (lAP). The NOx-N produced during an aeration period was immediately reduced to nitrogen gas (e.g. $N_2$ or $N_2O$) in the subsequent non-aeration periods, and nitrification in aeration periods occurred smoothly. Under these conditions, phosphorus removal occurred with the release of phosphorus during the non-aeration periods followed by the excess uptake of phosphorus in the activated sludge during aeration periods. It was confirmed that the lAP had a better ability to remove pollutants under both low temperatures and high nitrogen loading conditions than the ordinary method did. In addition to that, the total emission of $N_2O$ from lAP was reduced to approximately 1/50 of the conventional process for the same loading. By adopting an adequate aeration programme for individual swine wastewater treatment, this system will provide a promising means for nitrogen and phosphorus control without pH control or addition of methanol.

잉여슬러지를 이용한 저온 열적전처리 및 바이오 가스 특성 평가 (Evaluation of Low-temperature Thermal Pre-treatment and Biogas Characteristics using Waste Activated Sludge)

  • 최재훈;정성엽;김지태
    • 한국물환경학회지
    • /
    • 제35권4호
    • /
    • pp.299-307
    • /
    • 2019
  • The purpose of this study was to investigate the effect of low temperature thermal pre-treatment on biodegradation of waste activated sludge for anaerobic digestion as a countermeasure for increasing sludge generation. The experimental condition was accomplished in 2 %, 4 %, and 6 % TS concentration, and $70^{\circ}C$, $80^{\circ}C$, $90^{\circ}C$ of temperature for a maximum of 120 minutes retention time. Then, it was followed by analysis of physical/chemical properties, BMP test and composition of biogas. The biogas characteristic was evaluated by applying the modified Gomperz model. As a result, solubility of dissolved substrate, such as $SCOD_{Cr}$, soluble carbohydrate, and soluble protein, and biogas production increased as temperature increased. Solubilization efficiency at $90^{\circ}C$ was 18.4 %, 17.03 % and 16.88% in 2 %, 4 %, and 6 % TS concentration respectively. Also, solubilization rates of carbohydrate and protein similarly increased. BMP test results also showed that methane production in excess sludge increased to 0.194, 0.187 and $0.182m^3/kg$ VS. respectively, and lag phase decreased to 0.145, 0.220, 0.351 day due to acceleration of the hydrolysis step. Consequently, low-temperature thermal pre-treatment could increase biodegradability of sludge, positively affecting biogas production and sludge reduction.

유기성 폐기물의 혐기성 소화효율 향상을 위한 열가용화 하수슬러지의 통합소화 (Integrated Digestion of Thermal Solubilized Sewage Sludge to Improve Anaerobic Digestion Efficiency of Organic Waste)

  • 오경수;황정기;송영주;김민지;박준규;박대원
    • 한국물환경학회지
    • /
    • 제38권2호
    • /
    • pp.95-102
    • /
    • 2022
  • Studies for improving the efficiency of the traditional anaerobic digestion process are being actively conducted. To improve anaerobic digestion efficiency, this study tried to derive the optimal pretreatment conditions and mixing conditions by integrating the heat solubilization pretreatment of sewage sludge, livestock manure, and food waste. The soluble chemical oxygen demand (SCOD) increase rate of sewage sludge before and after heat solubilization pretreatment showed an increased rate of 224.7% compared to the control group at 170℃ and 25 min and showed the most stable increase rate. As a result of the biomethane potential test of sewage sludge before and after heat solubilization pretreatment, the total chemical oxygen demand (TCOD) and SCOD removal rates increased as the heat solubilization temperature increased, but did not increase further at temperatures above 170℃. In the case of methane generation, there was no significant change in the cumulative methane generation from 0.134 to 0.203 Sm3-CH4/kg-COD at 170℃ for 15 min. As a result of the integrated digestion of organic waste, the experimental condition in which 25% of the sewage sludge, 50% of the food waste, and 25% of the livestock manure were mixed showed the highest methane production of 0.3015 m3-CH4/kg-COD, confirming that it was the optimal mixing ratio condition. In addition, under experimental conditions mixed with all three substrates, M4 conditions mixed with 25% sewage sludge, 50% food waste, and 25% livestock manure showed the highest methane generation at 0.2692 Sm3-CH4/kg-COD.

제지공정 scum에서의 섬유상 원료 재이용성 평가 (Evaluation of Recyclability of Fibrous Raw Materials from Scums in Papermaking Process)

  • 강광호;김형진
    • 펄프종이기술
    • /
    • 제44권6호
    • /
    • pp.58-69
    • /
    • 2012
  • As the meaning of dictionary terminology, scum refers to a layer of impurities that accumulates at the surface of a liquid. In papermaking process, scum indicates the floated solid waste generated by a flotation process during the primary wastewater treatment. In this study, different kinds of stocks and scums collected from newspaper, liner, tissue and fine paper were analysed in details. The purpose of this study was firstly to demonstrate the composition characteristics of different sources of scum, secondly the analysis of environmental hazardous materials, and thirdly the evaluation of reutilization ability of fibrous materials from collected scum. As mentioned the meaning of solid waste, scum was actually differ from the waste sludge in sources, compositions and recycling abilities. In the same manner of waste paper, the sludge which is generated within onsite of papermaking processes would be reused as a raw material. The general compositions of scum from waste water were mainly inorganic ash materials, fine fibre fractions, recycled fibre debries, and ink particles. If the scum is able to reuse as fibrous additives in papermaking process, it could contribute to the savings of running costs in both the subsidiaries of fibrous material and the solid waste treatment with even small quantity.