• Title/Summary/Keyword: Waste salt

Search Result 329, Processing Time 0.023 seconds

Semi-Continuous Electrowinning of LiCl-$Li_2O$ Molten Salt (LiCl-$Li_2O$ 용융염에서의 리튬의 반연속적 전기정련)

  • Jin-Mok, Hur;Chung-Seok, Seo;Sun-Seok, Hong;Dae-Seung, Kang;Seong-Won, Park
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.2 no.3
    • /
    • pp.211-217
    • /
    • 2004
  • A Li recovery technology has been developed and related experimental verification efforts were carried out to improve the economical viability and environmental friendliness of the 'Advanced Spent Fuel Conditioning Process' being developed at KAERI. This technology is characterized by the combination of 1) the electrolysis of $Li_2O$ in a molten salt by using a porous non-conducting magnesia container at the cathode, 2) the separation of the Li in the container from the molten salt by elevating the container above the level of a molten salt, 3) the transport of the Li in the container by using a vacuum siphon to a separated reservoir. Li was semi-continuously recovered from a LiCl-$Li_2O$ molten salt with a more than 95% yield by using the developed technology.

  • PDF

Separation Characteristics of NdCl3 from LiCl-KCl Eutectic Salt in a Reactive Distillation Process using Li2CO3 or K2CO3 (탄산화물(Li2CO3, K2CO3)을 이용한 반응증류공정에서 LiCl-KCl 공융염 내 NdCl3의 분리특성)

  • Eun, Hee-Chul;Choi, Jung-Hoon;Lee, Tae-Kyo;Cho, In-Hak;Kim, Na-Young;Yu, Jae-Uk;Park, Hwan-Seo;Ahn, Do-Hee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.3
    • /
    • pp.181-186
    • /
    • 2015
  • It is necessary to develop an effective waste salt treatment technology for the minimization of radioactive waste generation from the pyroprocessing of spent nuclear fuel. For this reason, the separation characteristics of NdCl3 from LiCl-KCl eutectic salt in a reactive distillation process using Li2CO3 or K2CO3 were observed. NdCl3 was converted into oxychloride (NdOCl) or oxide (Nd2O3) in the reaction model between NdCl3 and the carbonates using HSC-Chemistry, and this result was confirmed in the reactive distillation test of the LiCl-KCl-NdCl3 system using the carbonates. Based on these results, the reactive distillation process conditions were determined to separate NdCl3 into an oxide form (Nd2O3) which can be easily fabricated into a final waste form.

Solidification of Molten Salt Waste by Gel-Route Pre-treatment (겔화 전처리법을 이용한 폐용융염의 고형화)

  • Park Hwan Seo;Kim In Tae;Kim Hwan Young;Ryu Seung Kon;Kim Joon Hyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.1
    • /
    • pp.57-65
    • /
    • 2005
  • This study suggested a new method for the solidification of molten salt waste generated from the electro-metallurgical process in the spent fuel treatment. Using binary material system, sodium silicate and phosphoric acid, metal chlorides were converted into metal phosphate in the micro-reaction module formed by SiO$_{2} particles. The volatile element in the reaction module would little vaporized below 1100$^{circ}$C After the gel product was mixed with borosilicate glass powder and thermally treated at 1000$^{circ}$C, li exists as Li$_{3}$PO$_4$ separated from glass phase and, Cs and Sr would be incorporated into an amorphous phase from XRD analysis. In case of the addition of ZrCl$_{4}$ to the binary system, the gel products were transformed into NZP structure considered as an prospective ceramic waste form after heat-treatment above 700 $^{circ}$C. From these results, the gel-route pretreatment can be considered as an effective approach to the solidincation of molten salt waste by the confirmed process or waste form and this also would be an alternative method on the ANL method using zeolites in USA by the confirmation of its chemical durability as an future work.

  • PDF

Electrochemical Behavior for a Reduction of Uranium Oxide in a $LiCl-Li_{2}O$ Molten Salt with an Integrated Cathode assembly

  • Park, Sung-Bin;Park, Byung-Heung;Seo, Chung-Seok;Jung, Ki-Jung;Park, Seong-Won
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11b
    • /
    • pp.39-50
    • /
    • 2005
  • Electrolytic reduction of uranium oxide to uranium metal was studied in a $LiCl-Li_{2}O$ molten salt system. The reduction mechanism of the uranium oxide to a uranium metal has been studied by means of a cyclic voltammetry. Effects of the layer thickness of the uranium oxide and the thickness of the MgO on the overpotential of the cathode and the anode were investigated by means of a chronopotentiometry. From the cyclic voltamograms, the decomposition potentials of the metal oxides are the determining factors for the mechanism of the reduction of the uranium oxide in a $LiCl-3\;wt{\%} Li_{2}O$ molten salt and the two mechanisms of the electrolytic reduction were considered with regards to the applied cathode potential. In the chronopotentiograms, the exchange current and the transfer coefficient based on the Tafel behavior were obtained with regard to the layer thickness of the uranium oxide which is loaded into the porous MgO membrane and the thickness of the porous MgO membrane. The maximum allowable currents for the changes of the layer thickness of the uranium oxide and the thickness of the MgO membrane were also obtained from the limiting potential which is the decomposition potential of LiCl.

  • PDF

A Study on the Separation of Long-lived Radionuclides and Rare Earth Elements by a Reductive Extraction Process (환원추출에 의한 장수명핵종과 희토류 원소의 분리 연구)

  • 권상운;안병길;김응호;유재형
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.421-425
    • /
    • 2003
  • The reductive extraction process is an important step to refine the TRU product from the electrorefining process for the preparation of transmutation reactor fuel. In this study, it was studied on the reductive extraction between the eutectic salt and Bi metal phases. The solutes were zirconium and the rare earth elements, where zirconium was used as a surrogate for the transuranic(TRU) elements. All the experiments were performed in a glove box filled with a argon gas. Li-Bi alloy was used as a reducing agent to reduce the high chemical activity of Li. The reductive extraction characteristics were examined using ICP, XRD and EPMA analysis. The reduction reaction was equilibrated within 3 hours after the Li addition. Three eutectic salt systems were compared and Zr was successfully separated from the rare earth elements in all the three salt systems.

  • PDF

Thermodynamic Calculations on the Chemical Behavior of SrO During Electrolytic Oxide Reduction

  • Jeon, Min Ku;Kim, Sung-Wook;Lee, Sang-Kwon;Choi, Eun-Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.3
    • /
    • pp.415-420
    • /
    • 2020
  • Strontium is known as a salt-soluble element during the electrolytic oxide reduction (EOR) process. The chemical behavior of SrO during EOR was investigated via thermodynamic calculations to provide quantitative data on the chemical status of Sr. To achieve this, thermodynamic calculations were conducted using HSC chemistry software for various EOR conditions. It was revealed that SrO reacts with LiCl salt to produce SrCl2, even in the presence of Li2O, and that the ratio of SrCl2 depends on the initial concentration of Li2O dissolved in LiCl. It was found that SrO reacts with Li to produce Sr during EOR and that the reduced Sr reacts with LiCl salt to produce SrCl2. As a result, the proportions of metallic forms were lower in Sr than in La and Nd under various EOR conditions. The thermodynamic calculations indicated that the three chemical forms of SrO, SrCl2, and Sr co-exist in the EOR system under an equilibrium with Li, Li2O, and LiCl.

Electrochemical Decontamination of Metallic Wastes Contaminated with Uranium Compounds in a Neutral Salt Electrolyte

  • Park, W. K.;Y. M. Yang;C. H. Jung;H. J. Won;W. Z. Oh;Park, J. H.
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.689-695
    • /
    • 2003
  • Electrochemical decontamination process has been applied for recycle or self disposal with authorization of large amount of metallic wastes contaminated with uranium compounds such as $UO_2$, ammonium uranyl carbonate (AUC), ammonium di-uranate (ADU), and uranyl nitrate(UN) with tributylphosphate(TBP) and dodecane, which are generated by dismantling the contaminated system components and equipment of a retired uranium conversion plant in Korea Atomic Energy Research Institute (KAERI). Electrochemical decontamination for metallic wastes contaminated with uranium compounds was evaluated through the experiments on the electrolytic dissolution of stainless steel as the material of the system components in neutral salt electrolytes. The effects of type of neutral salt as the electrolyte, current density, and concentration of electrolyte on the dissolution of the materials were evaluated. Decontamination performance tests using the specimens taken from a uranium conversion plant were quite successful with the application electrochemical decontamination conditions obtained through the basic studies on the electrolytic dissolution of structural material of the system components.

  • PDF

In-situ Measurements of Time-dependent Rock Deformations at the Waste Isolation Pilot Plant in USA (미국 Waste Isolation Pilot Plant에서의 시간변동 거동 계측)

  • Sangki Kwon;Chul-Hyung Kang;Jongwon Choi
    • Tunnel and Underground Space
    • /
    • v.9 no.3
    • /
    • pp.175-184
    • /
    • 1999
  • Systematic measurements in the field are the key component in the design process to ensure that optimal and safe designs result. The instruments installed at the Waste Isolation Pilot Plant, a underground nuclear waste repository in U.S., for measuring rock deformation was reviewed. Also discussions about installation and measurement for better understanding the complex time-dependent deformational behavior of underground excavation were made.

  • PDF

Examination on Electrochemical Behaviors of Niobium Chloride in Molten LiCl-KCl by Cyclic Voltammetry

  • Jeong, Gwan Yoon;Park, Jaeyeong
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2018.11a
    • /
    • pp.299-300
    • /
    • 2018
  • Electrochemical behaviors of Nb ion in the $LiCl-KCl-NbCl_5$ molten salt were examined. Cyclic voltammograms with different scan rates and scan range at $450^{\circ}C$ showed possible electrochemical redox reactions which were identified by comparison to the literature data. Peak potentials for each redox reaction were consistent with the literature, but some redox reactions were not clearly defined due to the formation of subchloride compound in chloride salt. The electrochemical behaviors of Nb ion related to the subchloride formation as well as Nb metal deposition will be investigated for the future work.

  • PDF

Experimental Observations for Anode Optimization of Oxide Reduction Equipment

  • David Horvath;James King;Robert Hoover;Steve Warmann;Ken Marsden;Dalsung Yoon;Steven Herrmann
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.4
    • /
    • pp.383-398
    • /
    • 2022
  • The electrochemical behavior was investigated during the electrolysis of nickel oxide in LiCl-Li2O salt mixture at 650℃ by changing several components. The focus of this work is to improve anode design and shroud design to increase current densities. The tested components were ceramic anode shroud porosity, porosity size, anode geometry, anode material, and metallic porous anode shroud. The goal of these experiments was to optimize and improve the reduction process. The highest contributors to higher current densities were anode shroud porosity and anode geometry.