• Title/Summary/Keyword: Waste products

Search Result 983, Processing Time 0.025 seconds

Suitability of bagasse ash-lime mixture for the stabilization of black cotton soil

  • Ramesh, H.N.;Kulkarni, Madhavi Gopal Rao;Raghunandan, Mavinakere Eshwaraiah;Nethravathi, S.
    • Geomechanics and Engineering
    • /
    • v.28 no.3
    • /
    • pp.255-263
    • /
    • 2022
  • Lime stabilization has conventionally been listed amid the key techniques of chemical stabilization. Replacing lime with sustainable agro-based by-products have gained prominence in recent decades. Bagasse ash (BA) is one such potential alternatives, an industrial waste with abundance in production, and industries exploring sustainable solutions for its safe disposal. Supplementing BA with lime could be an ideal approach to reduce lime consumption. However, suitability of BA and lime for the stabilization of expansive clays, such as black cotton (BC) soil is yet to be explored. This paper therefore aims to investigate the suitability of BA-lime mixtures to stabilize BC soil with emphasis to compaction behaviors and unconfined compressive strength (UCS) using standard laboratory procedures. Suitability of BA-lime mixture is then assessed against addition of calcium sulphate which, from previous experience, is detrimental with lime stabilization. Experimental outcomes nominate 15% BA as the optimum value observed from both compaction and UCS data, while addition of 4% lime to 15% BA showed the best results. Mineralogical and microstructural analysis show the presence of cementitious compounds with addition of lime and calcium sulphate with curing periods. While, formation of Ettringite needles were noted with the addition of calcium sulphate in BA-lime mixtures (at optimum values) after 90-day curing, and UCS results showed a decrease at this point. To this end, addition of BA in lime stabilization showed encouraging results as assessed from the compaction and UCS results. Nonetheless usage of calcium salts, with utmost emphasis on calcium sulphate and equivalent should be avoided.

Analysis of CO2 Emission and Economic of Rural Roads Concrete Pavement Using Air Cooled Slag Aggregate (괴재슬래그 골재를 적용한 농촌도로 포장 콘크리트의 CO2 배출량 및 경제성 분석)

  • Ahn, Byong Hwan;Kim, Hwang-Hee;Lee, Jae-Young;Cha, Sang-Sun;Lee, Goen Hee;Park, Chan-Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.6
    • /
    • pp.25-34
    • /
    • 2022
  • Recently, as a study to air cooled slag, which is an industrial by-product, research is being proceed to use it as a material for concrete. In this study, the workability, air content, compressive strength, CO2 emission and economic feasibility of concrete were analyzed when air cooled slag, an industrial by-product, was applied as aggregate for rural road pavement concrete. As a result of the analysis, both the slump and air contents test results of concrete using the air cooled slag aggregate satisfied the target values, and the compressive strength was increased when the air cooled slag aggregate was used compared to when the natural aggregate was applied. On the other hand, the largest amount of CO2 emission by raw material was found in aggregate. The carbon emission of rural road pavement concrete using air cooled slag aggregate increased when the Korean LCI DB was applied compared to when natural and crushed aggregates were applied, and the emission decreased when the German LCI DB was applied. This results are due to differences in the viewpoints of industrial by-products. However, considering the recycling of waste from the environmental aspect, it is necessary to simultaneously review the CO2 emission and recycling aspects in the future. Also, the application of air cooled slag aggregate had the effect of improving the economic efficiency of rural road pavement concrete about 18.75%.

Biodegradation of marine microplastics by the whole-cell catalyst overexpressing recombinant PETase (PET분해효소(PETase) 과발현 전세포 촉매의 해양미세플라스틱 생분해 활성 연구)

  • Hyunji, Kim;Jong-Ha, Park;Ae-Ran, Park;Dae-Hee, Lee;Joonho, Jeon;Hyuk Taek, Kwon;Sung In, Lim
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.133-142
    • /
    • 2022
  • The increased production and consumption of polyethylene terephthalate (PET)-based products over the past several decades has resulted in the discharge of countless tons of PET waste into the marine environment. PET microparticles resulting from the physical erosion of general PET wastes end up in the ocean and pose a threat to the marine biosphere and human health, necessitating the development of new technologies for recycling and upcycling. Notably, enzyme-mediated PET degradation is an appealing option due to its eco-friendly and energy-saving characteristics. PETase, a PET-hydrolyzing enzyme originating from Ideonella sakaiensis, is one of the most thoroughly researched biological catalysts. However, the industrial application of PETase-mediated PET recycling is limited due to the low stability and poor reusability of the enzyme. Here we developed the whole-cell catalyst (WCC) in which functional PETase is attached to the outer membrane of Escherichia coli. Immunoassays are used to identify the surface-expressed PETase, and we demonstrated that the WCC degraded PET microparticles most efficiently at 30℃ and pH 9 without agitation. Furthermore, the WCC increased the PET-degrading activity in a concentration-dependent manner, surpassing the limited activity of soluble PETase above 100 nM. Finally, we demonstrated that the WCC could be recycled up to three times.

Studies on Anti-Inflammatory and Anti-Melanogenic Effect of Grape Fruit Stem Extract (포도송이가지 추출물의 항염증 및 미백효능에 대한 연구)

  • Choi, Anna;Lee, Hyun-Seo;Kim, Jang Ho;Cho, Byoung Ok;Shin, Jae Young;Jeong, Seung-Il;Jang, Seon Il
    • The Korea Journal of Herbology
    • /
    • v.32 no.3
    • /
    • pp.71-78
    • /
    • 2017
  • Objectives : The various grape extracts derived from grape pulp, seed and skin, containing various types of polyphenols and flavonoids, have been known to have anti-inflammatory, antioxidant and improve cardiovascular condition as well as sun's damaging effects. However, there have been rare reports of various beneficial effects of grape fruit stem extract (GFSE), one of the waste products of grapes. We investigated anti-inflammatory and melanogenesis inhibitory effects of GFSE. Methods : One-hundred gram of grape fruit stem was extracted with 80% ethanol at room temperature for 3 days. After filtration, the ethanol was removed using vacuum evaporator, then lyophilized to obtain the dry extract which was stored at $-20^{\circ}C$ until used. NO levels were measured by using Greiss reagent. Prostaglandin $E_2$ ($PGE_2$) production was measured by ELISA assay. The expression levels of iNOS, COX-2, TRP-1 and TRP-2 were evaluated by western blot analysis. Results : GFSE reduced the level of nitric oxide and prostaglandin $E_2$ ($PGE_2$) production in a dose-dependent manner, compared to control. Expressions of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) protein were also effectively inhibited by the GFSE. In a tyrosinase inhibitory activity, GFSE significantly reduced the tyrosinase activity and melanin content in a dose dependent manner, compared to control. GFSE also decreased the expression of tyrosinase related protein-1 (TRP-1) and tyrosinase related protein-2 (TRP-2), known as a melanocyte-specific gene product involved in melanin synthesis. Conclusions : Therefore, these results indicated that GFSE had powerful anti-inflammatory and anti-melanogenic effects.

The Effect of the Project Plan Variance on Customer Satisfaction: Focus on IT Project Results (프로젝트 계획의 변동이 고객만족도에 미치는 영향: IT 프로젝트 결과 중심으로)

  • Yoon, Hyeong-Seok;Lee, Seouk-Joo;Kim, Seung-Chul;Park, So-Hyun
    • Journal of Information Technology Services
    • /
    • v.21 no.5
    • /
    • pp.51-64
    • /
    • 2022
  • Companies are planning and executing IT projects using information technology as a means to secure external competitiveness. However, IT projects have high risks and uncertainties due to the invisibility of outputs (systems, services, products), and changes in plans frequently occur during project execution. As a result, most IT projects are closed without achieving the target performance. This can lead to a waste of resources and money for the company, which in turn leads to the loss of opportunities to enter new markets. This study intends to analyze the effect of changes in the project plan on customer satisfaction, which is the project performance. Also, we want to find the importance of project planning so that the target performance of the IT project can be achieved. For the empirical analysis of this study, about 500 actual project data were collected. As for the analysis method, statistical analysis such as simple and multiple regression analysis and control effect was performed. Looking at the results of the analysis, it was found that the scope change affects the cost change and the schedule change. Also, changes in scope and cost were found to affect project performance. The theoretical performance of this study proved the theoretical fact that good project performance comes out if the IT project is executed as planned. The practical performance suggested the need for a change in project management by proving that thorough execution of the project planning stage can improve the project performance in the Korean project management culture, where the project planning stage is poorly performed for the rapid implementation of the IT project.

A Study on the Improvement of Optimal Design for the Re-Manufacturing of Planner Miller Spindle (플래너 밀러 스핀들의 재제조를 위한 최적설계 개선안에 관한 연구)

  • Lee, Hyun-Jun;Kim, Jin-Woo;Kim, Hyun-Su;Lee, Seong-Won;Gong, Seok-Whan;Chung, Won-Ji
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_2
    • /
    • pp.1119-1125
    • /
    • 2022
  • The depletion of resources and waste disposal caused by the continuous development of industry have emphasized the need to reduce consumption and production, recycle and reuse, and the importance of remanufacturing has increased in recent years. The spindle part of the aging planner miller, which is currently being remanufactured, is one of the factors that has the greatest impact on the performance of the machine tool. When designing the spindle part of the spindle shaft, there are considerations such as the configuration size bearing performance of the main shaft, but the diameter of the main shaft, the dangerous speed bearing, and the arrangement that affect the machining accuracy should be basically considered. As such, various studies have been conducted on the design of machine tool spindle spindles, but research on the reverse engineering of existing aging machine tool spindle spindles is poor. Reverse engineering is designing in the direction of improving performance by extracting specifications from already finished products, and first scanning the reverse engineered object through a 3D scanner, 3D modeling is performed based on the collected data, and then the process of deriving improvement plans by reverberating to improve performance by identifying wear and damage conditions is followed. Therefore, in this study, the purpose of this study is to provide data on reverse engineering by deriving improvement plans through optimal design for the bearing position of the aging planar Miller spindle spindle using central composite programming.

Application of Electro-membrane for Regeneration of NaOH and H2SO4 from the Spent Na2SO4 Solutions in Metal Recovery Process (금속회수공정에서 발생되는 Na2SO4 폐액으로 부터 NaOH 및 H2SO4 재생을 위한 Electro-membrane 응용)

  • Cho, Yeon-Chul;Kim, Ki-Hun;Ahn, Jae-Woo
    • Resources Recycling
    • /
    • v.31 no.5
    • /
    • pp.3-19
    • /
    • 2022
  • Electro-membrane technology is a process for separating and purifying substances in aqueous solution by electric energy using an ion exchange membrane with selective permeability, such as electrodialysis (ED) and bipolar electrodialysis (BMED). Electro-membrane technology is attracting attention as an environmental friendly technology because it does not generate by-products during the process and the recovered base or acid can be reused during the process. In this paper, we investigate the principles of ED and BMED technologies and various characteristics and problems according to the cell configuration. In particular, by investigating and analyzing research cases related to the treatment of waste sodium sulfate (Na2SO4), which is generated in large amounts during the metal recovery process.

Development of Eco-Efficiency Indicators for Yeosu Industrial Park (여수산업단지의 생태효율성지표 개발에 관한 연구)

  • Kim, Jung-In;Yun, Chang-Han;Yoon, Hyung-Sun
    • Clean Technology
    • /
    • v.16 no.3
    • /
    • pp.229-237
    • /
    • 2010
  • The industrial ecology indicators(IEI) for Yeosu Industrial Park were developed using eco-efficiency indicator(EEI). The key factors for the creation of IEI were two parts. One part is the value of the products which is selected as the total production value, the amount of ethylene production, the amount of light oil production instead of the total sales volume for Yeosu Industrial Park, since the currency exchange and the price of raw materials varied every year. The other part is the environmental burden. The electric consumption, the industrial water consumption, and the amount of discharged waste water are all officially opened to the public, were used in the calculation. Based on the value for the year of 2004, the IEI value for 2006 became worse to 0.954, but, was expected to be 1.153, a 15% improvement, for 2015 if the current EIP project is successfully performed.

Evaluation on the Effect of Coal-ash as Landfill Cover Material of Mono-Layer Cover System through the Field Scale Test (현장 실험을 통한 단층형 매립복토시스템의 복토재로서 석탄회의 효과 검토)

  • Yun, Sung-Wook;Kang, Sin-Il;Jin, Hae-Geun;Kim, Pil-Joo;Kim, Soon-Oh;Yu, Chan
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.7
    • /
    • pp.81-91
    • /
    • 2010
  • In order to investigate the applicability and suitability of the coal ash (bottom ash) to landfill final cover, field pilot-scale lysimeter experiments were carried out. The mixture of loamy soil, bottom ash, and construction waste was placed as a cover material in lysimeter ($2m{\times}6m{\times}1.2m$) which were constructed with cement brick, and then volumetric water contents, pF value, and the quantity of runoff and seepage of treatment boxes filled with the mixture of loamy soil and the industrial by-products were monitored from July, 2007 to february, 2008. Among the cases tested, consequently, the case containing the mixture of bottom ash and loamy soil was most effective in plant growth and water retention ability.

Effects of lemon or cinnamon essential oil vapor on physicochemical properties of strawberries during storage

  • Elise Freche;John Gieng;Giselle Pignotti;Salam A. Ibrahim;Helen P. Tran;Dong U. Ahn;Xi Feng
    • Food Science and Preservation
    • /
    • v.30 no.4
    • /
    • pp.549-561
    • /
    • 2023
  • Recently, consumers have gained an interest in natural and minimally processed foods, inciting the food industry to consider using of natural products as preservatives. Strawberries are a widely consumed fruit but are also highly perishable. Therefore, in this study, the physicochemical properties of strawberries (Fragaria×ananassa) were evaluated after a 12-h treatment with lemon essential oil (Citrus×limon) or cinnamon essential oil (Cinnamomum cassia) vapor during storage at 22℃ for 4 days in an accelerated shelf-life study and 4℃ for 18 days in a validation study. Weight loss was blunted in fruit treated with oil vapor during the first days of storage (p<0.05). Lemon essential oil delayed fruit darkening (p<0.05) but reduced the firmness of strawberries (p<0.05). Strawberries treated with cinnamon essential oil had a higher concentration of reducing sugars (p<0.05), and a decrease of 16.7% visible decay, although the difference was insignificant. Oil vapor treatment did not alter the pH, organic acid content, or soluble solid content during storage compared to the control. Since lemon and cinnamon essential oils have well-documented antimicrobial properties, they may be suitable for the natural preservation of fruit. This study provides new information on using essential oil vapor treatment to preserve fruits, and potentially decrease fruit loss and waste.