• Title/Summary/Keyword: Waste polyethylene

Search Result 110, Processing Time 0.033 seconds

Manufacture of the Fluidizing Media Using Rice Straw and Paper Wastewater Treatment (볏짚을 이용한 유동장 여재제조 및 제지폐수처리)

  • Yoon, Byoung-Tae;Kim, Gi-Yoon;Kim, Seong-Bo;Choi, Myoung-Jae
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.39 no.2 s.120
    • /
    • pp.9-16
    • /
    • 2007
  • Biological treatment using the activated sludge method and biofilm process has been developed for paper wastewater treatment. It is known that a water treatment using biofilm process has a high efficiency be-cause a great deal of microorganism could adhere to media. It is also known that various plastics such as polyurethane and polyethylene have been used as the media. In this study polyethylene was used as a media and rice straw an additive agent to improve porous and hydrophilic properties of the media for waste water treatment. Porosity and hydrophilic characteristics of polyethylene was increased as rice straw was added to polyethylene. Paper wastewater was then treated with newly developed environment materials. Rice straw showed excellent results in waste water treatment in various media. This environmentally friendly material prepared by polyethylene and rice straw could show similar results to those of a commercial porous polyurethane foam in wastewater treatment.

Utilization of PTE and LDPE Plastic Waste and Building Material Waste as Bricks

  • Intan, Syarifah Keumala;Santosa, Sandra
    • Korean Journal of Materials Research
    • /
    • v.29 no.10
    • /
    • pp.603-608
    • /
    • 2019
  • Plastic waste is becoming a problem in various countries because of the difficulty of natural decomposition. One type is PET plastic(Polyethylene Terephthalate), which is often used as a bottle for soft drink packaging, and LDPE(Low Density Polyethylene), which is also widely used as a food or beverage packaging material. The use of these two types of plastic continuously, without good recycling, will have a negative impact on the environment. Building material waste is also becoming a serious environmental problem. This study aims to provide a solution to the problem of the above plastic waste and building material waste by making them into a mixture to be used as bricks. Research is carried out by mixing both materials, namely plastic heated at a temperature of $180-220^{\circ}C$ and building material waste that had been crushed and sized to 30-40 mesh with homogeneous stirring. The ratios of PET and LDPE plastic to building material waste are 9 : 1, 8 : 2, 7 : 3, 6 : 4 and 5 : 5. After heating and printing, density, water absorption and compressive strength tests are carried out. Addition of PET and LDPE plastic can increase compressive strength, and reduce water absorption, porosity and density. A maximum compressive strength of 10.5 MPa is obtained at the ratio of 6 : 4.

A Study on the Manufacturing and Properties of High Density Polyethylene Composites Filled with Waste Gypsum (부산 석고를 충전한 고밀도폴리에틸렌 복합재료 제조 및 물성 연구)

  • Jin, Woo Seok;Moon, Junho;Kong, Tae Woong;Kim, Hyang Tae;Choi, Sang Hwan;Oh, Jeong Seok
    • Journal of Adhesion and Interface
    • /
    • v.22 no.3
    • /
    • pp.106-110
    • /
    • 2021
  • Recently, research using waste among eco-friendly materials has been attracting attention. In this study, we investigated the physical properties of blends in which high density polyethylene (HDPE) was filled with waste gypsum (CaSO4) generated during fertilizer manufacturing. Composites were prepared by adding the gypsum content 0~20 wt% using a twin screw extruder. The mechanical, rheological, and thermal properties of the composites were evaluated. It was found that the tensile strength of the composites was less than 4.1% compared to that of unfilled HDPE, so there is no significant deterioration in physical properties. The thermal stability of the composites was improved as the gypsum content increased and the gypsum content had little effect on the viscosities of the composites.

Effects of microplastics and salinity on food waste processing by black soldier fly (Hermetia illucens) larvae

  • Cho, Sam;Kim, Chul-Hwan;Kim, Min-Ji;Chung, Haegeun
    • Journal of Ecology and Environment
    • /
    • v.44 no.1
    • /
    • pp.45-53
    • /
    • 2020
  • Background: The black soldier fly (Hermetia illucens) is gaining attention as an efficient decomposer of food waste. However, recalcitrant compounds such as plastics mixed into food waste may have negative effects on its growth and survival. Moreover, its efficiency of food waste degradation may also be affected by plastics. In addition, salt (NaCl) can also be present in high concentrations, which also reduces the efficiency of H. illucens-mediated food waste treatment. In this study, we assessed the growth of black soldier fly larvae (BSFL) reared on food waste containing polyethylene (PE) and polystyrene (PS) and NaCl. The weight of BSFL was measured every 2-4 days. Survival and substrate reduction rates and pupation ratio were determined at the end of the experiment. Results: The total larval weight of Hermetia illucens reared on food waste containing PS was greater than that of the control on days 20 and 24. However, the survival rate was lower in the group treated with 5% PS, as was substrate reduction in all PS-treated groups. The weight of BSFL reared on food waste containing PE was lower than that of the control on day 6. PE in food waste did not affect the survival rate, but the pupation ratio increased and substrate consumption decreased with increasing PE concentrations. Regardless of the plastic type, the addition of NaCl resulted in decreased larval weight and pupation ratio. Conclusions: Larval growth of black soldier fly was inhibited not by plastics but by substrate salinity. Additional safety assessments of larvae reared on food waste containing impurities are needed to enable wider application of BSFL in vermicomposting.

Assessment of Applicability of Waste Vinyl Asphalt Concretes (폐비닐 아스팔트 콘크리트의 현장 적응성 연구)

  • Kim, Kwang-Woo;Li, Xiang-Fan;Lee, Soon-Jae;Kim, Sung-Un
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.111-114
    • /
    • 2001
  • This study is a fundamental research for recycling waste vinyl in asphalt concrete mixture for roadway pavement. The mixing method and proper content of waste polyethylene(PE) film were determined through preliminary mix design. This study used 2-type aggregate gradations and two-type waste PE films. The mixtures were applied for a test pavement on a rural road. Quality evaluation of the asphalt concrete confirmed that waste vinyl asphalt concrete was applicable to road pavement.

  • PDF

Unconfined compressive strength of PET waste-mixed residual soils

  • Zhao, Jian-Jun;Lee, Min-Lee;Lim, Siong-Kang;Tanaka, Yasuo
    • Geomechanics and Engineering
    • /
    • v.8 no.1
    • /
    • pp.53-66
    • /
    • 2015
  • Plastic wastes, particularly polyethylene terephthalate (PET) generated from used bottled water constitute a worldwide environmental issue. Reusing the PET waste for geotechnical applications not only reduces environmental burdens of handling the waste, but also improves inherent engineering properties of soil. This paper investigated factors affecting shear strength improvement of PET-mixed residual soil. Four variables were considered: (i) plastic content; (ii) plastic slenderness ratio; (iii) plastic size; and (iv) soil particle size. A series of unconfined compression tests were performed to determine the optimum configurations for promoting the shear strength improvement. The results showed that the optimum slenderness ratio and PET content for shear strength improvement were 1:3 and 1.5%, respectively. Large PET pieces (i.e., $1.0cm^2$) were favorable for fine-grained residual soil, while small PET pieces (i.e., $0.5cm^2$) were favorable for coarse-grained residual soil. Higher shear strength improvement was obtained for PET-mixed coarse-grained residual soil (148%) than fine-grained residual soils (117%). The orientation of plastic pieces in soil and frictional resistance developed between soil particles and PET surface are two important factors affecting the shear strength performance of PET-mixed soil.

Processing Characteristics of the Condensed Wastewater Resulting from Food Waste Disposal using a Submerged Polyethylene Hollow Fiber Membrane (음식물 소멸기에서 발생하는 응축폐수의 Polyethylene 침지형 중공사막을 이용한 처리 특성)

  • Ryu, Jae-Sang;Jeon, Tae-Bong;Kim, Jin-Ho;Chung, Kun-Yong
    • Membrane Journal
    • /
    • v.20 no.2
    • /
    • pp.127-134
    • /
    • 2010
  • This study is conducted about the system that reduces organism after fermenting food waste from a food waste disposal equipment, divides gas made when food waste is fermented into gas and water, and then sends gas to a reactor again, condenses water, and apply it to the MBR system with submerged MF hollow fiber membranes. A submerged MF hollow fiber membrane module was installed to a food waste disposal equipment and a water treatment system made by Bio Hitech Co,. Ltd. to process food waste generated from a staff cafeteria in a H institute for 90 days. For initial seeding of a food waste disposal equipment, 305 kg of rice bran, chaff, and sawdust as well as 1,648 kg of food were input during the operation, and 1,600 L of condensed wastewater occurred. Fermented by-product after finishing running a food waste disposal equipment was 386 kg and its reduction was shown to be 80%. The organism was processed by applying submerged MF hollow fiber membrane module to the MBR system of condensed wastewater, and the result shows reduction rates were BOD 99.9%, COD 97.5%, SS 98.6%, T-N 54.6% and T-P 34.7% and the total colon bacillus was perfectly eliminated.

Chromaticity Improvement of PEG Waste from Wire Sawing of Silicon Ingot (실리콘 잉곳 절삭시 발생하는 폐 PEG 색도 개선에 관한 연구)

  • Cho, Yun-Kyeong;Jung, Kyeong-Youl;Sim, Min-Seok;Lee, Gi-Ho
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.310-316
    • /
    • 2012
  • The chromaticity of polyethylene glycol (PEG) generated from the recyling of a silicone slurry waste was improved by using activated carbon powder and a carbon filter. The color change of the PEG waste was investigated by changing the amount of adsorbent, adsorption time and temperature. The surface area of activated carbon did not have a significant impact on improving the color of the PEG waste. According to the results for the APHA color variation of the PEG waste changing the amount of the carbon adsorbent, the optimal usage to achieve the low APHA value was 100~150 mg-C/g-PEG. From the investigatnion on the effect of the adsorption temperature range from $25^{\circ}C$ to $100^{\circ}C$, it was found that the optimal temperatures were $40{\sim}50^{\circ}C$ in terms of achieving the lowest APHA value. The variation of the APHA color was investigated by changing the operation condition of the activated carbon filters. The use of ACF was a good way to enhance the chromaticity of the PEG waste. As a result, the APHA value of the PEG waste (APHA=53 at the initial waste) was reduced to be 10 through the ACF purification. It was also confirmed that the performance of the used carbon adsorbent can be recovered by the washing with purified water.

Morphology and Mechanical Properties of Waste PVC Blends (II)- The Relationship between Rheology and Morphology of Waste PVC/PE Blends (폐폴리(염화 비닐)계 고분자 블렌드의 구조 및 물성 연구(II)-폐폴리(염화 비닐)/폴리에틸렌 고분자 블렌드의 형태학 및 유변학적 거동)

  • 유영재;박재찬;원종찬;최길영;이재흥
    • Polymer(Korea)
    • /
    • v.28 no.6
    • /
    • pp.460-467
    • /
    • 2004
  • The polymer blends of waste poly(vinyl chloride) (RPVC) and waste polyethylene (RPE) were prepared by melt mixing. Their morphologies and rheological properties were investigated and torque changes were also measured. Comparing the torques calculated by the log additivity rule with measured torque changes, the polymer blends showed the large negative deviation behavior (NDB) due to their incompatibility. The shear viscosities of the blends decreased with increasing shear rates, showing shear thinning behavior. The shear viscosity of the blends with compatibilizer was larger than that of the blends without compatibilizer. SEM micrographs of the strands after measurement showed that the domain size of the blends was slightly enlarged with increasing the shear rate. Also, RPVC domain size was larger in the core-sections of the strands from capillary viscometer than in the surface region.

A Study on Flange Coupling Design of Polyethylene Corrugated Steel Pipe (PE 피복형 파형강관의 플랜지 이음부 설계에 관한 연구)

  • Kim, Tae-Kyu;Lee, Ho-Young;Yang, Sang-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.3 s.258
    • /
    • pp.403-408
    • /
    • 2007
  • The concrete pipe(Hume, PC) and polyethylene(PE) pipe are usually used for dram pipe in local market. Hume pipe, however, is heavy and needs the high cost of construction and PC pipe has a disadvantage to easily occur the deformation by the outside pressure even though it is light and constructible. The corrugated steel pipe coated with polyethylene is used increasedly because it is durable, constructible and economical. However, it is not used for sewage or waste water because it is hard to guarantee the watertight property on the coupling part. In this study, we studied on the flange coupling and the method of its construction to guarantee the watertight property and easy to use. If the developed flange coupling and method are used on a construction field, the economical property, constructible property and structural safety can be guaranteed.