• Title/Summary/Keyword: Waste oil

Search Result 533, Processing Time 0.031 seconds

Surface Flux Measurements of Methane from Lamdfills by Closed Chamber Technique and its Validation (플럭스챔버에 의한 매립지표면 메탄의 배출량 측정과 분석)

  • 김득수;장영기;전의찬
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.5
    • /
    • pp.499-509
    • /
    • 2000
  • Next to carbon dioxide, methane is the second largest contributor to global warming among anthropogenic greenhouse gases. Methane is emitted into the atmosphere from both natural and anthropogenic sources. Natural sources include wetlands, termites, wildries, ocean and freshwater. Anthropogenic sources include landfill, natural gas and oil production, and agriculture. These manmade sources account for about 70% of total global methane emissions; and among these, landfill accounts for approximately 10% of total manmade emissions. Solid waste landfills produce methane as bacteria decompose organic wastes under anaerobic conditions. Methane accounts for approximately 45 to 50 percent of landfill gas, while carbon dioxide and small quantities of other gases comprise the remaining to 50 to 55 percent. Using the closed enclosure technique, surface emission fluxes of methane from the selected landfill sites were measured. These data were used to estimate national methane emission rate from domestic landfills. During the three different periods, flux experiments were conducted at the sites from June 30 through December 26, 1999. The chamber technique employed for these experiments was validated in situ. Samples were collected directly by on-site flux chamber and analyzed for the variation of methane concentration by gas chromatography equipped with FID. Surface emission rates of methane were found out to vary with space and time. Significant seasonal variation was observed during the experimental period. Methane emission rates were estimated to be 64.5$\pm$54.5mgCH$_4$/$m^2$/hr from Kimpo landifll site. 357.4$\pm$68.9mgCH$_4$/$m^2$/hr and 8.1$\pm$12.4mgCH$_4$/$m^2$/hr at KwanJu(managed and unmanaged), 472.7$\pm$1056mgCH$_4$/$m^2$/hr at JonJu, and 482.4$\pm$1140 mgCH$_4$/$m^2$/hr at KunSan. These measurement data were used for the extrapolation of national methane emission rate based on 1997 national solid waste data. The results were compared to those derived by theoretical first decay model suggested by IPCC guidelines.

  • PDF

Esterification of Free Fatty Acids by Strong Acidic Ionic Liquids (강산성 이온성 액체에 의한 유리지방산의 에스테르화 연구)

  • Kim, Young-Joo;Lee, Jin-Suk;Kim, Deog-Keun;Rhee, Young-Woo;Han, Jeong-Sik
    • Korean Chemical Engineering Research
    • /
    • v.45 no.3
    • /
    • pp.286-290
    • /
    • 2007
  • The esterification efficiency of several ionic liquids has been investigated to determine the feasibility for the conversion of free fatty acids to alkylester. Five ionic liquid catalysts having strong acidity, BPC[$AlCl_3$], BMIM[$Bf_4$], BMIM[$Pf_6$], EMIM[$Ntf_2$], BMIM[Otf], have been employed in this work. BPC[$AlCl_3$] has the highest esterification efficiency among the ionic liquid catalysts. Over 90% conversion efficiency has been achieved in the esterification of the simulated used cooking oil by BPC[$AlCl_3$] with two hours reaction time. Since BPC[$AlCl_3$] has several advantages such as high esterification activity, ease of separation from reaction mixture and reusability after treatment procedure, it will be a promising catalyst for the conversion of free fatty acids to esters in waste fats.

Study of development of Bilge Separator for new IMO Regulation I - Demulsification - (IMO 협약 개정에 따른 Bilge Separator 개발에 관한 연구 I - 에멀젼 분리에 관한 연구 -)

  • Lim Jae-Dong;Park Sang-Ho;Kim In-Soo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2005.10a
    • /
    • pp.175-179
    • /
    • 2005
  • Treatment of Emulsion is very important to development of Bilge Separator for new IMO Regulation. It is too difficult to demulsify the emulsion in the bilge waste water, so we use chemical treatment to break emulsion stability. Broken oil particle is treated by flotation. Bilge Separator on the Ship doesn't have enough time to treat Bilge waste water because of small space in the ship. For the solution to this problem, we experiment to find primary factor as coagulator, pH, and amount of coagulator. As the basis of test, we decided coagulator, pH and quantity of coagulator.

  • PDF

Numerical Study on the Process Analysis of Biomass Fast Pyrolysis in a Circulating Fluidized Bed (순환유동층 반응기내 바이오매스의 급속열분해 공정해석에 관한 수치해석적 연구)

  • Lee, Yu Ri;Park, Hoon Chae;Choi, Myung Kyu;Choi, Hang Seok
    • Journal of Korea Society of Waste Management
    • /
    • v.34 no.5
    • /
    • pp.518-527
    • /
    • 2017
  • The development of renewable energy is currently strongly required to address environmental problems such as global warming. In particular, biomass is highlighted due to its advantages. When using biomass as an energy source, the conversion process is essential. Fast pyrolysis, which is a thermochemical conversion method, is a known method of producing bio-oil. Therefore, various studies were conducted with fast pyrolysis. Most studies were conducted under a lab-scale process. Hence, scaling up is required for commercialization. However, it is difficult to find studies that address the process analysis, even though this is essential for developing a scaled-up plant. Hence, the present study carries out the process analysis of biomass pyrolysis. The fast pyrolysis system includes a biomass feeder, fast pyrolyzer, cyclone, condenser, and electrostatic precipitator (ESP). A two-stage, semi-global reaction mechanism was applied to simulate the fast pyrolysis reaction and a circulating fluidized bed reactor was selected as the fast pyrolyzer. All the equipment in the process was modeled based on heat and mass balance equations. In this study, process analysis was conducted with various reaction temperatures and residence times. The two-stage, semi-global reaction mechanism for circulating fluidized-bed reactor can be applied to simulate a scaled-up plant.

The Effects of Calcium-type Catalysts on the Pyrolysis Reaction of Raw Material Resin for Producing from Waste Vinyl to Fuel-oil (폐 농업용 비닐 수지에서 연료유 생성을 위한 원료 수지의 열분해반응에서 칼슘계 촉매의 영향)

  • Bak, Young-Cheol;Choi, Joo-Hong;Cho, Tae-Ho
    • Journal of Energy Engineering
    • /
    • v.17 no.1
    • /
    • pp.8-14
    • /
    • 2008
  • The effects of calcium type catalysts addition on the thermal decomposition of low density polyethylene (LDPE) and ethylene vinyl acetate (EVA) resin have been studied in a thermal analyze. (TGA, DSC) and a small batch reactor. The calcium type catalysts tested were calcinated dolomite, lime, and calcinated oyster shell. As the results of TGA experiments, pyrolysis starting temperature for LDPE varied in the range of $330{\sim}360^{\circ}C$ according to heating rate, but EVA resin had the 1st pyrolysis temperature range of $300{\sim}400^{\circ}C$ and the 2nd pyrolysis temperature range of $425{\sim}525^{\circ}C$. The calcinated dolomite enhanced the pyrolysis rate in LDPE pyrolysis reaction, while the calcium type catalysts reduced the pyrolysis rate in EVA pyrolysis reaction. In the DSC experiments, addition of calcium type catalysts reduced the melting point, but did not affect to the heat of fusin. Calcinated dolomite reduced 20% of the heat of pyrolysis reaction. In the batch system experiments, the mixing of calcinated dolomite and lime enhanced the yield of fuel oil, but did not affect to the distribution of carbon numbers.

A Study on Combustion and Emission Characteristics of a Diesel Engine Fuelled with Pyrolysis Oil-Ethanol and Pilot Diesel (바이오원유-에탄올/파일럿 디젤유 이종연료 혼소를 통한 디젤엔진의 연소 및 배출가스 특성에 관한 연구)

  • Kim, Min-Jae;Lee, Seok-Hwan;Cho, Jeong-Kwon;Yoon, Jun-Kyu;Lim, Jong-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.420-427
    • /
    • 2017
  • Recently, the depletion of fossil fuels, global warming and environmental pollution have emerged as a worldwide problem, and studies of new renewable energy sources have been progressed. Among the many renewable energy sources, the use of bio fuel has the potential to displace fossil fuels due to low price, easy to handle, and the abundant sources. Pyrolysis oil (PO) derived from waste wood and sawdust is considered an alternative fuel for use in diesel engines. On the other hand, PO is limited to diesel engines because of its low cetane number, high viscosity, high acidity, and low energy density. Therefore, to improve its poor properties, PO was mixed with alcohol fuels, such as ethanol. Early mixing with ethanol has the benefit of improving the storage and handling properties of the PO. Furthermore, a PO-ethanol blended fuel was injected separately, which can be fired through pilot-injected diesel in a dual-injection diesel engine. The experimental results showed that the substitution of diesel with blended fuel increases the amount of HC and CO, but reduces the NOx and PM significantly.

Synthesis and Lubricant Properties of Estolides based on Fatty Acid (지방산 기반 에스토라이드 합성 및 윤활특성)

  • Son, Jeong-Mae;Yoo, Seunghyun;Lee, Sangjun;Shin, Jihoon;Chung, Kunwo;Yang, Youngdo;Kim, Young-Wun
    • Tribology and Lubricants
    • /
    • v.30 no.5
    • /
    • pp.256-264
    • /
    • 2014
  • Enhancing the value of fine chemicals based on biomass resources is an important objective for addressing environmental and other concerns such as demand for renewable or green products, as well as from the political perspective to reduce dependence on fossil feedstock associated with the use of petroleum-based products. Based on these considerations, we studied the synthesis of estolide using waste plant-based oil materials and their application as lubricants and pour point depressants. Five estolides were prepared by varying molar ratio of palmitic acid (PA) to oleic acid (OA) using a reaction time of 48 h. The estolides were characterized by size exclusion chromatography (SEC) and nuclear magnetic resonance (NMR). The isolated yields were in the range of 57-78 % and purity was 93-97%, showing iodine values of 18.2-37.8, total acid numbers (TANs) of 75.6-94.2 mg KOH/g and estolide numbers (ENs) of 1.2-1.8. Increasing the ratio of OA to PA in the synthesis decreased the kinematic viscosity and clouding point of the estolides. Four ball wear test of the estolides as a base oil demonstrated that the wear scar diameter (WSD) of the estolides was significantly lower (0.320-0.495 mm) than the WSD of general base oils such as 150N and Yubase (0.735 and 0.810 mm, respectively), indicating better wear resistance of the estolides. However, the lubricant property was found to be independent of the amount of OA in the estolides. These new materials are prospective candidates for application as a lubricant base oil.

The Effects of Zeolite-Type Catalysts on the Pyrolysis Reaction of Raw Material Resin to Produce Fuel-Oil from Waste Vinyl (폐 농업용 비닐 수지에서 연료유 생성을 위한 원료 수지의 열분해 반응에서 제올라이트계 촉매의 영향)

  • Bak, Young-Cheol;Choi, Joo-Hong;Cho, Tae-Ho
    • Korean Chemical Engineering Research
    • /
    • v.47 no.3
    • /
    • pp.303-309
    • /
    • 2009
  • The effects of zeolite type catalysts addition on the thermal decomposition of low density polyethylene(LDPE) and ethylene vinyl acetate(EVA) resin have been studied in a thermal analyzer(TGA, DSC) and a small batch reactor. The zeolite type catalysts tested were natural zeolite, FCC catalyst, used FCC catalyst, and catalyst A. As the results of TGA experiments, addition of antifogging-agent decreased the pyrolysis point to $250^{\circ}C$, but addition of longevity-agent and clay reduced the pyrolysis rate in EVA resin. Addition of the zeolite type catalysts in the LDPE resin increased the pyrolysis rate in the order of catalyst A > used FCC catalyst > natural zeolite > LDPE resin. Addition of the zeolite type catalysts in the EVA resin increased the pyrolysis rate in the order of used FCC catalyst > natural zeolite > catalyst A > EVA resin. In the DSC experiments for LDPE resin, addition of zeolite type catalysts decreased the melting point and the heat of pyrolysis reaction in the order of catalyst A > used FCC catalyst > natural zeolite> LDPE resin. In the batch system experiments, the mixing of natural zeolite enhanced the yield of liquid fuel oil.

PCBs concentration and congener distribution in transformer insulation oil samples using GC/ECD and HRGC/HRMS analysis (GC/ECD와 HRGC/HRMS 분석을 이용한 변압기 절연유 중 PCBs 농도 및 이성체 분포)

  • Kim, Kyoung-Soo;Kim, Hyoung-Seop;Song, Byung-Joo;Jeong, Mi-Jeong;Kim, Jong-Guk;Park, Seok-Un;Shin, Sun-Kyoung
    • Analytical Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.232-240
    • /
    • 2005
  • The total PCBs level in the transformer insulation oil samples using GC/ECD and HRGC/HRMS were ranged from 0.087 to $223.6{\mu}g/g$ and ranged from N.D. to $154.04{\mu}g/g$, respectively. The calculated TEQ values were ranged from 0.00067 to 6.8 ng WHO-TEQ/g. Among the samples, 6 samples showed higher than 2 ppm concentration (specific waste criterion of Korea). A variety in the concentration of total PCBs were observed between ECD and HRMS analysis. This is maybe due to quantification mehtod. The Aroclor 1248 wasn't present in the samples. The distribution pattern of Co-PCB congeners showed that the ratio of monoortho substituted congeners were higher than non-ortho substituted congeners. Among that, PCB-167 congener was predominant. In addition, the distribution of Co-PCBs congeners was different with that of flue gas and ambient air samples as well as commercial PCB formulations (Aroclor, Kanechlor).

Production of Biodiesel Using Immobilized Lipase from Proteus vulgaris (Proteus vulgaris에서 유래한 리파아제의 고정화 및 바이오디젤 생산)

  • Yoon, Shin-Ah;Han, Jin-Yee;Kim, Hyung-Kwoun
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.3
    • /
    • pp.238-244
    • /
    • 2011
  • Biodiesel, mono-alkyl esters of long chain fatty acids, is one of the alternative fuels derived from renewable lipid feedstock, such as vegetable oils or animal fats. For decade, various lipases have been used for the production of biodiesel. However, the production of biodiesel by enzymatic catalyst has profound restriction in industry application due to high cost. To overcome these problems, many research groups have studied extensively on the selection of cheap oil sources, the screening of suitable lipases, and development of lipase immobilization methods. In this study, we produced biodiesel from plant oil using Proteus vulgaris lipase K80 expressed in Escherichia coli cells. The recombinant lipase K80 was not only expressed in high level but also had high specific lipase activity and high stability in various organic solvents. Lipase K80 could produce biodiesel from olive oil by 3-stepwise methanol feeding method. The immobilized lipase K80 also produced biodiesel using the same 3-stepwise method. The immobilized lipase could produce biodiesel efficiently from various plant oils and waste oils.