• Title/Summary/Keyword: Waste ground rubber tire powder

Search Result 5, Processing Time 0.018 seconds

Preparation and Characterization of Polypropylene/Waste Ground Rubber Tire Powder Microcellular Composites by Supercritical Carbon Dioxide

  • Zhang, Zhen Xiu;Lee, Sung-Hyo;Kim, Jin-Kuk;Zhang, Shu Ling;Xin, Zhen Xiang
    • Macromolecular Research
    • /
    • v.16 no.5
    • /
    • pp.404-410
    • /
    • 2008
  • In order to obtain 'value added products' from polypropylene (PP)/waste ground rubber tire powder (WGRT) composites, PP/WGRT microcellular foams were prepared via supercritical carbon dioxide. The effects of blend composition and processing condition on the cell size, cell density and relative density of PP/WGRT micro-cellular composites were studied. The results indicated that the microcellular structure was dependent on blend composition and processing condition. An increased content of waste ground rubber tire powder (WGRT) and maleic anhydride-grafted styrene-ethylene-butylene-styrene (SEBS-g-MA) reduced the cell size, and raised the cell density and relative density, whereas a higher saturation pressure increased the cell size, and reduced the cell density and relative density. With increasing saturation temperature, the cell size increased and the relative density decreased, whereas the cell density initially increased and then decreased.

A study on the Characteristic of Waste Ground Rubber Tire Powders with Pre-treatment Process for Recycling (전처리 공정에 따른 폐타이어 재생 고무분말의 특성연구)

  • Park, Jongmoon;An, Ju-Young;Park, Jin-Eui;Bang, DaeSuk;Kim, Bong-Suk;Oh, Myung-Hoon
    • Resources Recycling
    • /
    • v.24 no.2
    • /
    • pp.55-61
    • /
    • 2015
  • In this study, mechanical properties of waste ground rubber tire powder were investigated to evaluate the influence of pre-treatment process for recycling. The tensile test, fracture test and morphology observation were carried out using various kinds of waste ground tire powders, which were produced by grinding and devulcanization process, respectively. As a results, it was found that the produced rubber powder through grinding process increased its tensile strength and elongation with decreasing particle size because of decreasing surface area. Devulcanized rubber powder also increased its tensile strength and elongation by de-crosslink with sulfur. It could be also suggested that devulcanization treatment after grinding process was more efficient recycling process for both increasing tensile property and fracture elongation of waste ground rubber tire powders.

A Study on Surface Modification of Waste Rubber Tire(I) (표면개질에 의한 폐타이어 분말의 재활용에 관한 연구(I))

  • 김진국;황성혁;이성효;정재흠
    • Resources Recycling
    • /
    • v.12 no.2
    • /
    • pp.28-35
    • /
    • 2003
  • The powder utilization is the one of the best recycling methods for the waste tires. However, economic problem still exist. In order to overcome an economic problem the ground rubber particles are surface modified, which induced to the rubber particles that have good mechanical properties and higher compatibility. In this study, we investigated ultrasonic treatment and reduced rubber particle size. Results showed that sulfur cross-linkage network of the waste rubber is changed by the ultrasonic treatment.

Characteristics Studies of Waste Tire Rubber Powders using the Different Grinding Methods (분쇄 방식에 따른 폐타이어 고무분말의 특성 연구)

  • Park, Jong-Moon;An, Ju-Young;Bang, Daesuk;Kim, Bong-Seok;Oh, Myung-Hoon
    • Resources Recycling
    • /
    • v.23 no.3
    • /
    • pp.44-50
    • /
    • 2014
  • In this study, a method of shear crushing and a two-stage disk mill were introduced to grind the waste tire powder. Rubber chips with various size were obtained during the crushing or grinding step. The two-stage disk mill was composed of two drum-type blades rotating at various speed and in opposite directions. Therefore, more roughly surfaced particles of micronized waste tire powder were obtained using shear crushing rather than using conventional cutting crushing. In this study, the shape of shear-crushed waste tire particles was compared with conventional cutting crushing particles by scanning electron microscope. In addition, the particle size analyzer was employed to determine the appropriate particle size of waste ground tire powders obtained in this study.

A Study on the Mechanical and Rheological Properties of the Recycled Polyethylene Composites with Ground Waste Tire Powder (재생 폴리에틸렌/폐타이어 분말 복합체의 기계적 특성 및 유변학적 특성에 관한 연구)

  • Kye, H.;Shin, K.;Bang, D.
    • Elastomers and Composites
    • /
    • v.41 no.2
    • /
    • pp.97-107
    • /
    • 2006
  • The recycled polyethylene composites with various ratio of ground waste tire powder were manufactured by using a fully intermeshing co-rotating twin screw extruder for the reuse of waste tire scrap. In this investigation, the ground waste tire powders (GWTP) were blended with virgin HDPE and recycled polyethylene in the weight ratio of 0 to 50 wt.%. Mechanical properties such as tensile strength, elongation at break and impact strength were measured by using ASTM standard. The experimental results for the various composite showed that the tensile strength of composites decreased with increasing GWTP ratio, while elongation at break increased with the amounts of GWTP. On the other hand, the impact strength for the three kinds of composites showed maximum at the 30 wt.% of GWTP and then decreased. Morphology of the fracture surface tends to be rough with increasing waste tire powder content. Rheological properties were investigated by measuring the shear viscosity against shear rates and softening temperatures. They showed that melt viscosity of rubber composites in this study subsequently increased with increasing GWTP content as a result of increase of flow resistance against external stress and followed a Power-law behavior.