• Title/Summary/Keyword: Waste ferrite

Search Result 41, Processing Time 0.018 seconds

A Study on the Removal Characteristics of a Radioactively Contaminated Oxide Film from the irradiated Stainless Steel Surface using Short Pulsed Laser Ablation (초단 펄스레이저 어블레이션에 의한 스테인리스강 표면의 오염산화막 제거 특성)

  • Kim, Geun-Woo;Yoon, Sung-Sik;Kim, Ki-Chul;Lee, Myung-Won;Kang, Myungchang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.10
    • /
    • pp.105-110
    • /
    • 2020
  • Radioactive Oxides are formed on the surface of the primary equipment in a nuclear power plant. In order to remove the oxide film that is formed on the surfaces of the equipment, chemical and physical decontamination technologies are used. The disadvantage of traditional technologies is that they produce secondary radioactive wastes. Therefore, in this study, the short-pulsed laser eco-friendly technology was used in order to reduce production of the secondary radioactive wastes. They were also used to minimize the damages that were caused on the base material and to remove the contaminated oxide film. The study was carried out using a Stainless steel 304 specimen that was coated with nickel-ferrite particles. Further, the laser source was selected with two different wavelengths. Furthermore, the depth of the coating layer was analyzed using a 3D laser microscope by changing the laser ablation conditions. Based on the analysis, the optimal conditions of ablation were determined using a 1064nm short-pulsed laser ablation technique in order to remove the radioactively contaminated oxide film from the irradiated stainless steel surface.