• Title/Summary/Keyword: Waste cycle

Search Result 1,208, Processing Time 0.028 seconds

Increase of treatment amount of thermophilic oxic process considering calorie/water (C/W) ratio (칼로리/수분 (C/W)비를 고려한 고온호기 처리법에서의 처리량 증가)

  • Jeon, Kyoung-Ho;Choi, Dong-Yoon;Song, Jun-Ik;Park, Kyu-Hyun;Kwag, Jung-Hoon;Kim, Jae-Hwan;Kang, Hee-Sul
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.2
    • /
    • pp.203-210
    • /
    • 2010
  • The signification of calorie/water (C/W) ratio was investigated in the treatment of highly concentrated organic wastes by thermophilic oxic process (TOP). Swine waste was used in this study. When C/W ratio was 1.6, most of swine waste was decomposed and all water was evaporated in the 24-h injection cycle. To improve treatment efficiency of TOP treating swine waste, the effect of shortening the swine waste injection cycle was examined. The shortening of injection cycle was conducted to stimulate the activity of thermophilic bacteria. A high temperature in the reactor was maintained by shortening of the injection cycle. When the swine waste injection cycle was shortened, the C/W ratio was fixed at 1.6. As a result, by shortening the swine waste injection cycle from 24-h to 12 and 6-h, the maximum loading rate of swine waste per day could be improved 1.9 and 3.5 times, respectively.

THE IMPACT OF FUEL CYCLE OPTIONS ON THE SPACE REQUIREMENTS OF A HLW REPOSITORY

  • Kawata, Tomio
    • Nuclear Engineering and Technology
    • /
    • v.39 no.6
    • /
    • pp.683-690
    • /
    • 2007
  • Because of increasing concerns regarding global warming and the longevity of oil and gas reserves, the importance of nuclear energy as a major source of sustainable energy is gaining recognition worldwide. To make nuclear energy truly sustainable, it is necessary to ensure not only the sustainability of the fuel supply but also the sustained availability of waste repositories, especially those for high-level radioactive waste (HLW). From this perspective, the effort to maximize the waste loading density in a given repository is important for easing repository capacity problems. In most cases, the loading of a repository is controlled by the decay heat of the emplaced waste. In this paper, a comparison of the decay heat characteristics of HLW is made among the various fuel cycle options. It is suggested that, for a future fast breeder reactor (FBR) cycle, the removal and burning of minor actinides (MA) would significantly reduce the heat load in waste and would allow for a reduction of repository size by half.

TSPA 2006 and Its Implication

  • Hwang, Y.;Kang, C.H.;Lee, Y.M.;Jeong, M.S.;Lee, S.H.
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2007.05a
    • /
    • pp.105-106
    • /
    • 2007
  • PDF

EUTECTIC(LiCl-KCl) WASTE SALT TREATMENT BY SEQUENCIAL SEPARATION PROCESS

  • Cho, Yung-Zun;Lee, Tae-Kyo;Choi, Jung-Hun;Eun, Hee-Chul;Park, Hwan-Seo;Park, Geun-Il
    • Nuclear Engineering and Technology
    • /
    • v.45 no.5
    • /
    • pp.675-682
    • /
    • 2013
  • The sequential separation process, composed of an oxygen sparging process for separating lanthanides and a zone freezing process for separating Group I and II fission products, was evaluated and tested with a surrogate eutectic waste salt generated from pyroprocessing of used metal nuclear fuel. During the oxygen sparging process, the used lanthanide chlorides (Y, Ce, Pr and Nd) were converted into their sat-insoluble precipitates, over 99.5% at $800^{\circ}C$; however, Group I (Cs) and II (Sr) chlorides were not converted but remained within the eutectic salt bed. In the next process, zone freezing, both precipitation of lanthanide precipitates and concentration of Group I/II elements were preformed. The separation efficiency of Cs and Sr increased with a decrease in the crucible moving speed, and there was little effect of crucible moving speed on the separation efficiency of Cs and Sr in the range of a 3.7 - 4.8 mm/hr. When assuming a 60% eutectic salt reuse rate, over 90% separation efficiency of Cs and Sr is possible, but when increasing the eutectic salt reuse rate to 80%, a separation efficiency of about 82 - 86 % for Cs and Sr was estimated.

Study on a Phosphorylation of Rare Earth Nuclide (Nd) in LiCl-KCl-NdCl3 System using Li3PO4-K3PO4 (LiCl-KCl-NdCl3계에서 Li3PO4-K3PO4를 이용한 희토류 핵종(Nd) 인산화에 관한 연구)

  • Eun, Hee-Chul;Kim, Jun-Hong;Choi, Jung-Hoon;Cho, Yung-Zun;Lee, Tae-Kyo;Park, Hwan-Seo;Park, Geun-Il
    • Journal of Advanced Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.125-129
    • /
    • 2013
  • In the pyrochemcial process of spent nuclear fuel, it is necessary to separate rare earth nuclides from LiCl-KCl eutectic waste salt for radioactive waste reduction. This paper presents the phosphorylation of neodymium chloride in LiCl-KCl-NdCl3 system using Li3PO4-K3PO4 as a phosphorylation agent in a chemical reactor with pitched blade impellers. The phosphorylation test was performed changing operation temperature, stirring rate, and amount of phosphorylation agent. Neodymium chloride was effectively converted into neodymium phosphate (NdPO4). It was confirmed that more than 99 wt% of neodymium can be separated from LiCl-KCl-NdCl3 system using a phosphorylation method l

Life cycle impact assessment of the environmental infrastructures in operation phase: Case of an industrial waste incineration plant

  • Kim, Hyeong-Woo;Kim, Kyeong-Ho;Park, Hung-Suck
    • Environmental Engineering Research
    • /
    • v.22 no.3
    • /
    • pp.266-276
    • /
    • 2017
  • A life cycle impact assessment was applied in an industrial waste incineration plant to evaluate the direct and indirect environmental impacts based on toxicity and non-toxicity categories. The detailed life cycle inventory of material and energy inputs and emission outputs was compiled based on the realistic data collected from a local industrial waste incineration plant, and the Korean life cycle inventory and ecoinvent database. The functional unit was the treatment of 1 tonne of industrial waste by incineration and the system boundary included the incineration plant and landfilling of ash. The result on the variation of the impact by the unit processes showed that the direct impact was decreased by 79.3, 71.6, and 90.1% for the processes in a semi dry reactor, bag filter, and wet scrubber, respectively. Considering the final impact produced from stack, the toxicity categories comprised 91.7% of the total impact. Among the toxicity impact categories, the impact in the eco-toxicity category was most significant. A separate estimation of the impact due to direct and indirect emissions showed that the direct impact was 97.7% of the total impact. The steam recovered from the waste heat of the incineration plant resulted in a negative environmental burden.

Study on the Rankine Cycle using Ammonia-Water Mixture as Working Fluid for Use of Low-Temperature Waste Heat (저온폐열 활용을 위한 암모니아-물 혼합물을 작업유체로 하는 랭킨사이클에 관한 연구)

  • Kim, Kyoung-Hoon;Kim, Se-Woong;Ko, Hyung-Jong
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.6
    • /
    • pp.570-579
    • /
    • 2010
  • Since the temperature of waste heat source is relatively low, it is difficult to maintain high level of efficiency in power generation when the waste heat recovery is employed in the system. In an effort to improve the thermal efficiency and power output, use of ammonia-water mixture as a working fluid in the power cycle becomes a viable option. In this work, the performance of ammonia-water mixture based Rankine cycle is thoroughly investigated in order to maximize the power generation from the low temperature waste heat. In analyzing the power cycle, several key system parameters such as mass fraction of ammonia in the mixture and turbine inlet pressure are studied to examine their effects on the system performance. The results of the cycle analysis find a substantial increase both in power output and thermal efficiency if the fraction of ammonia increases in the working fluid.

A Thermodynamic Study on Exhaust Heated Gas Turbine Cycle (연소기 후치 가스터빈에 관한 열역학적 연구)

  • Park, J.K.;Ohu, S.C.;Yang, O.Y.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.6
    • /
    • pp.18-28
    • /
    • 1994
  • An exhaust-heated gas turbine cycle equipped with a waste heat recovery boiler and ammonia absorption-type refrigerator using waste heat is newly devised and analyzed. The general performance of this cycle is compared with that of the conventional gas turbine cycle. This cycle shows a potential high efficiency. When 1500K of gas turbine inlet temperature the efficiency is 53 percent as compared to 45 percent for a conventional combined cycle. Suction cooling of this cycle leads to improve the thermal efficiency and the specific output.

  • PDF