• Title/Summary/Keyword: Waste container

Search Result 127, Processing Time 0.026 seconds

Simulation of the Migration of 3H and 14C Radionuclides on the 2nd Phase Facility at the Wolsong LILW Disposal Center

  • Ha, Jaechul;Son, Yuhwa;Cho, Chunhyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.4
    • /
    • pp.439-455
    • /
    • 2020
  • Numerical model was developed that simulates radionuclide (3H and 14C) transport modeling at the 2nd phase facility at the Wolsong LILW Disposal Center. Four scenarios were simulated with different assumptions about the integrity of the components of the barrier system. For the design case, the multi-barrier system was shown to be effective in diverting infiltration water around the vaults containing radioactive waste. Nevertheless, the volatile radionuclide 14C migrates outside the containment system and through the unsaturated zone, driven by gas diffusion. 3H is largely contained within the vaults where it decays, with small amounts being flushed out in the liquid state. Various scenarios were examined in which the integrity of the cover barrier system or that of the concrete were compromised. In the absence of any engineered barriers, 3H is washed out to the water table within the first 20 years. The release of 14C by gas diffusion is suppressed if percolation fluxes through the facility are high after a cover failure. However, the high fluxes lead to advective transport of 14C dissolved in the liquid state. The concrete container is an effective barrier, with approximately the same effectiveness as the cover.

Packing placement method using hybrid genetic algorithm for segments of waste components in nuclear reactor decommissioning

  • Kim, Hyong Chol;Han, Sam Hee;Lee, Young Jin;Kim, Dai Il
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3242-3249
    • /
    • 2022
  • As Kori unit 1 is undergoing the decommissioning process, estimating the disposal amount of waste from the decommissioned nuclear reactor has become one of the challenging issues. Since the waste disposal amount estimation depends on the packing of the waste, it is highly desirable to optimize the waste packing plan. In this study, we developed an efficient scheme for packing waste component segments. The scheme consists of 1) preparing three-dimensional models of segments, 2) orienting each segment in such a way to minimize the bounding box volume, and 3) applying hybrid genetic algorithm to pack the segments in the disposal containers. When the packing solution converges in the algorithm, it comes up with the number of containers used and the placement of segments in each container. The scheme was applied to Kori-1 reactor pressure vessel. The required number of containers calculated by the developed scheme was 24 compared to 42 that was the estimation of the prior packing plan, resulting in disposal volume savings by more than 40%. The developed method is flexible for applications to various packing problems with waste segments from different cutting options and different sizes of containers.

The Establishment and Improvement of Full Cycle History Management System for Low- and Intermediate-level Radioactive Waste (중저준위 방사성폐기물 전주기 이력관리체계 구축 및 개선)

  • Jin-Woo Lee;Jun Lee;Hee-Chul Eun;Ji-Young Jeong
    • Journal of Radiation Industry
    • /
    • v.18 no.1
    • /
    • pp.95-100
    • /
    • 2024
  • To establish a radioactive waste life cycle history management system, a series of processes including waste generation, classification, packaging, storage, transportation, and disposal were reflected in the information management system. A preliminary review process was introduced to reduce the amount of radioactive waste generated and manage it efficiently. Through this, the amount of radioactive waste generated must be checked from the beginning of the research, and the generated radioactive waste must be thoroughly managed from the stage of generation to final disposal. In particular, in the case of radioactive waste data generated during nuclear facility operation and each experiment, a radioactive waste information management system must be operated to receive information from the waste generator and integrate it with processing information at the management stage. The application process for small-package containers was reflected so that information such as the generation facility of radioactive waste, generation facility, project information, types of radioactive waste, major radionuclides, etc. In the radioactive waste management process, the preceding steps are to receive waste history from the waste generators. This includes an application for a specified container with a QR label, pre-inspection, and management request. Next, the succeeding steps consist of repackaging, treatment, characterization, and evaluating the suitability of disposal, for a process to transparently manage radioactive wastes.

A Conservative Safety Study on Low-Level Radioactive Waste Repository Using Radionuclide Release Source Term Model (선원항 모델을 사용한 저준위 방사성폐기물 처분장의 보수적인 안전성고찰)

  • Kim, Chang-Lak;Lee, Myung-Chan;Cho, Chan-Hee
    • Nuclear Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.63-70
    • /
    • 1993
  • A simplified safety assessment is carried out on rock-cavern type disposal of LLW using the analytical repository source term (REPS) model. For reliable prediction of the leach rates for various radionuclides, degradation of concrete structures, corrosion rate of waste container, degree of corrosion on the container surface, and the characteristics of radionuclides are considered in the REPS model. The results of preliminary assessment show that Cs-137, Ni-63, and Sr-90 are dominant. For the parametric uncertainty and sensitivity analysis, Latin hypercube sampling technique and rank correlation technique are applied. The results of the potential public health impacts show that radiological dose to intruder in the worst case scenario will be negligible and that more attention should be given to near-field performance.

  • PDF

A preparation plan proposal of nuclear power plant decommissioning radioactive waste characterization report (원자력발전소 해체 방사성폐기물 특성보고서 작성 방안 제안)

  • Kim, Chang Lak;Lee, Sun Kee;Kim, Heon;Park, Hae Soo;Sung, Suk Hyun;Kong, Chang Sig
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.17 no.1
    • /
    • pp.76-84
    • /
    • 2021
  • Radioactive waste generated from nuclear power plant decommissioning shall be strictly managed so that radioactive materials above the allowable limit are not leaked into the environment. Radioactive wastes shall be classified and treated for management based on characteristics such as the type of waste, physicochemical properties, nuclide concentration and radioactivity. Waste characterization report shall be prepared and submitted to the disposal facility operator to ensure that the treated waste is suitable for disposal. The disposal facility operator shall review the waste Characterization report and visit the nuclear power plant decommissioning site to ensure that the wastes are processed step by step according to the plan. The waste Characterization report may be used as input data to evaluate disposal facility safety. Domestic and foreign data are collected and reviewed to confirm the entire processes from waste generation to delivery. This paper proposes the method to prepare the waste Characterization report which contains data and information on waste characteristics, treatment facilities & method and packaging method & container.

Analyses on Thermal Stability and Structural Integrity of the Improved Disposal Systems for Spent Nuclear Fuels in Korea

  • Lee, Jongyoul;Kim, Hyeona;Kim, Inyoung;Choi, Heuijoo;Cho, Dongkeun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.spc
    • /
    • pp.21-36
    • /
    • 2020
  • With respect to spent nuclear fuels, disposal containers and bentonite buffer blocks in deep geological disposal systems are the primary engineered barrier elements that are required to isolate radioactive toxicity for a long period of time and delay the leakage of radio nuclides such that they do not affect human and natural environments. Therefore, the thermal stability of the bentonite buffer and structural integrity of the disposal container are essential factors for maintaining the safety of a deep geological disposal system. The most important requirement in the design of such a system involves ensuring that the temperature of the buffer does not exceed 100℃ because of the decay heat emitted from high-level wastes loaded in the disposal container. In addition, the disposal containers should maintain structural integrity under loads, such as hydraulic pressure, at an underground depth of 500 m and swelling pressure of the bentonite buffer. In this study, we analyzed the thermal stability and structural integrity in a deep geological disposal environment of the improved deep geological disposal systems for domestic light-water and heavy-water reactor types of spent nuclear fuels, which were considered to be subject to direct disposal. The results of the thermal stability and structural integrity assessments indicated that the improved disposal systems for each type of spent nuclear fuel satisfied the temperature limit requirement (< 100℃) of the disposal system, and the disposal containers were observed to maintain their integrity with a safety ratio of 2.0 or higher in the environment of deep disposal.

Sustainability in PET Packaging

  • Shin, Yang-Jai;Kang, Dong-Ho
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.15 no.3
    • /
    • pp.105-111
    • /
    • 2009
  • In this work, source reduction of poly ethylene terephthalate (PET) packaging are discussed as aspect of sustainability, such as reuse, refill and recycling through the various treatment methods and historical studies for municipal solid waste (MSW) disposal. Since PET has good chemical, physical and mechanical properties, and provides good oxygen and carbon dioxide barrier properties, PET is one of the most widely used thermoplastic polyester in the U.S. and around the world. As the demand for non-renewable PET is increasing, several approaches have been developed to meet economical feasibility and environmental responsibility without degrading material performance. Several companies, such as Coca-Cola Co., Easterform Packaging Co. and Kraft, have tried to develop lightweight PET bottle, and some of lightweight PET bottles are already commercialized. Reuse and refilling for PET container is well developed in Europe, such as Denmark, German and Netherland by supportive legislation and policies. Recycling process is the best way to economically reduce PET waste. In consequence, advanced technique and further development must be provided due to increasing PET packaging waste.

  • PDF

The Evaluation of Scum Recyclability from Waste Sludge in Linerboard Mills (라이너지 제조공정 탈수 슬러지의 scum 재이용 가능성 평가)

  • Kang, Kwang-Ho;Kim, Hyoung-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.40 no.3
    • /
    • pp.42-47
    • /
    • 2008
  • For the purpose of reduction of production cost in the industrial papermaking process, the use of waste paper has been more and more increased as a fibrous raw material, and the closed system of white water became closed more than ever. "Scum" indicates the floated sludge by a flotation during primary wastewater treatment process in paper mills. If the scum is used as the raw material, it could reduce both the raw material and solid waste treatment cost with even small quantity. In this study, the element survey and the toxicity measurement was carried out for recycling scum. A load factor of stock preparation process in paper mills was measured by somerville screen. Physical properties of paper sheet containing the accepted scum from the stock of AOCC or KOCC were evaluated. The result of this study shows that recycling scum has potential to be used in paper making system. It also might be able to reduce the required energy used by the pressing or drainage process, the raw material cost, and solid waste treatment cost due to the recycling of scum.

Transport Risk Assessment for On-Road/Sea Transport of Decommissioning Waste of Kori Unit 1

  • Woo Yong Kim;Hyun Woo Song;Jisoo Yoon;Moon Oh Kim
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.2
    • /
    • pp.255-269
    • /
    • 2023
  • Compared to operational wastes, nuclear power plant (NPP) decommissioning wastes are generated in larger quantities within a short time and include diverse types with a wider range of radiation characteristics. Currently used 200 L drums and IP-2 type transport containers are inefficient and restrictive in packaging and transporting decommissioning wastes. Therefore, new packaging and transport containers with greater size, loading weight, and shielding performance have been developed. When transporting radioactive materials, radiological safety should be assessed by reflecting parameters such as the type and quantity of the package, transport route, and transport environment. Thus far, safety evaluations of radioactive waste transport have mainly targeted operational wastes, that have less radioactivity and a smaller amount per transport than decommissioning wastes. Therefore, in this study, the possible radiation effects during the transport from NPP to disposal facilities were evaluated to reflect the characteristics of the newly developed containers and decommissioning wastes. According to the evaluation results, the exposure dose to transport workers, handling workers, and the public was lower than the domestic regulatory limit. In addition, all exposure dose results were confirmed, through sensitivity analysis, to satisfy the evaluation criteria even under circumstances when radioactive materials were released 100% from the container.

Fiber Analysis and Environmental Assessment of Recycled Waste paper for Eco-friendly Corrugated Box Manufacture (친환경 골판지 상자 제조를 위한 재활용 폐지 섬유의 물리적·환경적 특성 평가)

  • Park, Jung-Yoon;Lee, Tai-Ju;Kim, Hyoung-Jin;Kim, Jin-Mu
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.4
    • /
    • pp.65-74
    • /
    • 2013
  • In the manufacture of corrugated box, the fibrous raw materials are mainly consisted of recycled papers, such as KOCC(Korean Old Corrugated Container), kraft sack, and AOCC(American Old Corrugated Container). Among these recycled waste paper, the proportion of KOCC is relatively higher than others in fibrous raw materials. Generally, KOCC shows some poor fiber properties and contains hazardous heavy metal sources. Therefore, it is to evaluate the property of recycled paper sources for eco-friendly corrugated box manufacture. In this study, the physical and mechanical properties of 3 kinds of recycled fibers and their mixed stocks were analyzed. The environmental assessment was also evaluated by analyzing the 4 representative heavy metal contents and evaporation residues in waste papers. As the results, KOCC showed the poorest fiber qualities and had the highest heavy metal contents and evaporation residues among the recycled fibers. Finally, the mechanical strength properties were increased by decreasing KOCC proportion of mixed stock conditions. In addition, the heavy metal contents and evaporation residues were also decreased by increasing recycled AOCC and kraft sack proportion.