• Title/Summary/Keyword: Waste acid

Search Result 951, Processing Time 0.024 seconds

Optimization Strategies for Amine Regeneration Process with Heat-Stable Salt Removal Unit (열 안정성 염 제거장치를 고려한 아민 재생 공정 최적화 전략)

  • Lee, Jesung;Lim, Jonghun;Cho, Hyungtae;Kim, Junghwan
    • Applied Chemistry for Engineering
    • /
    • v.31 no.5
    • /
    • pp.575-580
    • /
    • 2020
  • In this study, we simulated an amine regeneration process with heat-stable salts removal unit. We derived the optimal operating conditions considering the flow rate of waste, the removal rate of heat-stable salts, and the loss rate of MDEA (methyl diethanolamine). In the amine regeneration process that absorbs and removes acid gas, heat-stable salt impairs the absorption efficiency of process equipment and amine solution. An ion exchange resin method is to remove heat-stable salts through neutralization by using a strong base solution such as NaOH. The acid gas removal process was established using the Radfrac model, and the equilibrium constant of the reaction was calculated using Gibbs free energy. The removed amine solution is separated and flows to the heat-stable salts remover which is modeled by using the Rstoic model with neutralization reaction. Actual operation data and simulation results were compared and verified, and also a case study was conducted by adjusting the inflow mass of removal unit followed by suggesting optimal conditions.

Eco-Friendly Production Process of N-Hydroxysuccinimide from Succinic Anhydride (Succinic Anhydride로부터 N-Hydroxysuccinimide의 친환경 생산공정 개발)

  • Goo, Bon Suk;Baek, Jeong yeon;Park, Hwa In;Jung, In Chan;Kim, Woo-Sun
    • Clean Technology
    • /
    • v.26 no.2
    • /
    • pp.91-95
    • /
    • 2020
  • A new eco-friendly synthetic method for N-hydroxysuccinimide (NHS), widely used in the pharmaceutical and fine chemical industries, is developed. Conventional synthesis method yields NHS of about 70% after its reaction with NH2OH to succinic acid. In this method, NHS can be obtained using low-cost succinic acid, but a great deal of solvents are required as an extraction method to purify NHS, while the work-up process is complicated, resulting in low yield. In addition, there is a safety risk due to the high reaction temperature for commercial production, and it is not economical due to the high cost of production from the generation of much waste because of an acid catalyst and the use of various solvents. In order to make up for this shortcoming, this study used succinic anhydride as a raw material under low temperature reaction and developed a new eco-friendly industrial synthesis method using isobutyl alcohol for a single solvent and non-catalytic reaction. The economic evaluation confirms that there is a cost reduction effect of about 20%. In the future, based on this result, studies may establish a commercial production technology through scale-up research and proceed with foreign technology transfer.

Synthesis of Amino-type Anion Exchanger from Acrylic Acid Grafted Polypropylene Nonwoven Fabric and Its Ion-Exchange Property (아크릴산 그라프트 폴리프로필렌 부직포로부터 아민형 음이온 교환체의 합성 및 이온교환특성(I))

  • Park, Hyun-Ju;Na, Choon-Ki
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.5
    • /
    • pp.527-534
    • /
    • 2006
  • The purpose of this study is the development of more effective filter-type polymer adsorbent for removal of anionic pollutants from wastewater. In order to synthesize the polymer adsorbent that possesses anionic exchangeable function, carboxyl(-COOH) group of PP-g-AA nonwoven fabric was converted into amine($-NH_2$) group by the chemical modification using diethylene triamine(DETA). FT-IR data indicate that amine group was introduced into PP-g-AA through amidation of grafted acrylic acid by reaction with DETA. The degree of amination increased with increase in the reaction time and temperature of the chemical modification process, and was significantly improved by the pre-swelling treatment of PP-g-AA with solvent and addition of metal chlorides as a catalyst in following order as $NH_4OH>MeOH{\geq}HCl{\geq}H_2O\;and\;AlCl_3>FeCl_3{\geq}SnCl_2{\gg}ZnCl_2{\geq}FeCl_2$, respectively. However, the addition of catalyst limited the reusability of DETA, hence was less useful from the viewpoint of cost effectiveness and waste management. The anion exchange capacity of the aminated PP-g-AA(PP-g-AA-Am) increased with increase in the degree of amination, but it reached maximum value at the degree of amination as about $50{\sim}60%$. The anion exchange capacity of PP-g-AA-Am was higher than those of commercial anion resins.

Production of Keratinolytic Protease by Bacillus pumilus RS7 and Feather Hydrolysate As a Source of Amino Acids (Bacillus pumilus RS7에 의한 난분해성 케라틴 분해효소의 생산 및 아미노산 공급원으로서 우모 분해산물)

  • Woo, Eun-Ok;Kim, Min-Ju;Son, Hyeng-Sik;Ryu, Eun-Youn;Jeong, Seong-Yun;Son, Hong-Joo;Lee, Sang-Joon;Park, Geun-Tae
    • Journal of Environmental Science International
    • /
    • v.16 no.10
    • /
    • pp.1203-1208
    • /
    • 2007
  • Feathers are produced in huge quantities as a waste product at commercial poultry processing plants. Since feathers are almost pure keratin protein, feather wastes represent an alternative to more expensive dietary ingredients for animal feedstuffs. Generally they become feather meal used as animal feed after undergoing physical and chemical treatments. These processes require significant energy and also cause environmental pollutions. Therefore, biodegradation of feather by microorganisms represents an alternative method to prevent environment contamination. The aim of this study was to investigate cultural conditions affecting keratinolytic protease production by Bacillus pumilus RS7. We also assessed the nutritive value of microbial and alkaline feather hydrolysates, The composition of optimal medium for the keratinolytic protease was fructose 0.05%, yeast extract 0.3%, NaCl 0.05%, K2HPO4 0.03%, KH2PO4 0.04% and MgCl2 6H2O 0.01%, respectively. The optimal temperature and initial pH was $30^{\circ}C$ and 9.0, respectively. The keratinolytic protease production under optimal condition reached a maximum after 18 h of cultivation. Total amino acid content of feather hydrolysates treated by NaOH and B. pumilius RS7 was $113.8\;{\mu}g/ml$ and $504.9\;{\mu}g/ml$, respectively. Essential amino acid content of feather hydrolysates treated by NaOH and B. pumilius RS7 was $47.2\;{\mu}g/ml$ and $334.0\;{\mu}g/ml$, respectively. Thus, feather hydrolysates have the potential for utilization as an ingredient in animal feed.

A Study on the Solubilisation of Excess Sludge using Microbubble Ozone (잉여슬러지 가용화를 위한 마이크로버블 오존 이용에 관한 연구)

  • Lee, Shun-Hwa;Jung, Kye-Ju;Kwon, Jin-Ha;Lee, Se-Han
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.4
    • /
    • pp.325-332
    • /
    • 2010
  • This study was conducted with the experiment of solubilisation of excess sludge by microbubble ozone process. To improve ozone contact efficiency, microbubble ozones which its diameter were the avearge 30 ${\mu}m$, microbubble size less than 40 ${\mu}m$ occupied about over 90% of all. In treating sludge using microbubble ozones, in case microbubble ozones are injected at microbubble ozone dosage of 0.34 g $O_3/g$ SS or less regardless of sludge concentration, microbubble ozone consumption rate was found to be 100% with no emission of waste ozones. In treating sludges by each concentration, in case the initial SS concentration of sludge is set to 6,447 mg/L, 5,557 mg/L, 3,180 mg/L, 1,092 mg/L and 515 mg/L, the amount of removed SS tended to increase with increase in initial SS concentration for the same microbubble ozone dosage, and treatment of sludge with high initial SS concentration was effective in raising the oxidation efficiency of microbubble ozones. On the other hand, as a result of reviewing acid, alkali and microbubble ozone treatment as composite treatment of sludge, use of acid treatment for the pre-treatment of microbubble ozone was more effective than alkali treatment, and in case of treatment at microbubble ozone dosage 0.05g $O_3/g$ SS with the concentration of sulfuric acid infused in the sludge, the amount of removed SS, 153.9 g, was 1.9 times more than 81.2 g the amount of single treatment of microbubble ozone.

Effect of Consecutive Application of Organic Matter on Soil Chemical Properties and Enzyme Activity in Potato Cultivation Soil (유기물 연용이 감자재배 비화산회토양의 화학성과 효소활성에 미치는 영향)

  • Joa, Jae-Ho;Moon, Kyung-Hwan;Seo, Hyeong-Ho;Choi, Kyung-San;Kim, Seong-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.801-807
    • /
    • 2011
  • This study was carried out to evaluate effect of consecutive application of organic matter on soil chemical properties and dehydrogenase, acid phosphatase activity in non-volcanic ash soil during three cropping season. Organic matter mixture and organic fertilizer (MOF, $2,000kg\;10a^{-1}$), food waste compost (FWC, $2,000kg\;10a^{-1}$), and pig manure compost (PMC, 2,000, 4,000, and $6,000kg\;10a^{-1}$) were applied for each cropping season. Soil pH values were increased after three cropping season in all treatment. In the soils of the increased application of PMC, soil pH, total-nitrogen, available phosphate, exchangeable cations (K, Ca, and Mg), and heavy metal (Zn and Cu) contents were increased. In addition, Soil dehydrogenase activity was significantly increased in proportions to PMC application rate and cropping season during potato cultivation period. The activity was two times higher in PMC ($4,000kg\;10a^{-1}$) than control after the third cropping season. Soil dehydrogenase activity was in order of PMC>FWC>NPK+PMC>MOF. Acid phosphatase activity was higher in PMC ($6,000kg\;10a^{-1}$) than other treatment. Soil Zn content and dehydrogenase activity showed linearly correlation, which were MOF ($R^2$=0.427), FWC ($R^2$=0.427) and PMC ($R^2$=0.411, p<0.01), respectively. This study demonstrated that soil chemical properties and enzyme activity could be affected greatly by consecutive application of different organic matter in the potato cultivation field.

A study on the improvement of hydrophilic properties of activated carbon surface by nitric acid treatment (질산 처리에 따른 활성탄 표면의 친수성 특성 향상에 관한 연구)

  • Kang, Hye Ju;Yang, So Yeong;Kim, Tae Min;Kim, Yong Ryeol
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.5
    • /
    • pp.1241-1248
    • /
    • 2021
  • In order to figure out various environmental problems, various governments and companies are investigating more environmentally policies and technologies. In other words, activated carbon is widely used for the adsorption of different harmful gases and waste liquid treatment. However since the required surface properties are different in various industry, depending on the adsorption properties, the development of activated carbon demand in different ways. In this work, we have investigated and developed the activated carbon surface to improve the hydrophilic properties by nitric acid treatment through reforming of activated carbon.

Cobalt and Nickel Ferrocyanide-Functionalized Magnetic Adsorbents for the Removal of Radioactive Cesium (방사성 세슘 제거를 위한 코발트 혹은 니켈 페로시아나이드가 도입된 자성흡착제)

  • Hwang, Kyu Sun;Park, Chan Woo;Lee, Kune-Woo;Park, So-Jin;Yang, Hee-Man
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.1
    • /
    • pp.15-26
    • /
    • 2017
  • Cobalt ferrocyanide (CoFC) or nickel ferrocyanide (NiFC) magnetic nanoparticles (MNPs) were fabricated for efficient removal of radioactive cesium, followed by rapid magnetic separation of the absorbent from contaminated water. The $Fe_3O_4$ nanoparticles, synthesized using a co-precipitation method, were coated with succinic acid (SA) to immobilize the Co or Ni ions through metal coordination to carboxyl groups in the SA. CoFC or NiFC was subsequently formed on the surfaces of the MNPs as Co or Ni ions coordinated with the hexacyanoferrate ions. The CoFC-MNPs and NiFC-MNPs possess good saturation magnetization values ($43.2emu{\cdot}g^{-1}$ for the CoFC-MNPs, and $47.7emu{\cdot}g^{-1}$ for the NiFC-MNPs). The fabricated CoFC-MNPs and NiFC-MNPs were characterized by XRD, FT-IR, TEM, and DLS. The adsorption capability of the CoFC-MNPs and NiFC-MNPs in removing cesium ions from water was also investigated. Batch experiments revealed that the maximum adsorption capacity values were $15.63mg{\cdot}g^{-1}$ (CoFC-MNPs) and $12.11mg{\cdot}g^{-1}$ (NiFC-MNPs). Langmuir/Freundlich adsorption isotherm equations were used to fit the experimental data and evaluate the adsorption process. The CoFC-MNPs and NiFC-MNPs exhibited a removal efficiency exceeding 99.09% for radioactive cesium from $^{137}Cs$ solution ($18-21Bq{\cdot}g^{-1}$). The adsorbent selectively adsorbed $^{137}Cs$, even in the presence of competing cations.

Evaluation of $^{14}C$ Behavior Characteristic in Reactor Coolant from Korean PWR NPP's (국내 경수로형 원자로 냉각재 중의 $^{14}C$ 거동 특성 평가)

  • Kang, Duk-Won;Yang, Yang-Hee;Park, Kyong-Rok
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • This study has been focused on determining the chemical composition of $^{14}C$ - in terms of both organic and inorganic $^{14}C$ contents - in reactor coolant from 3 different PWR's reactor type. The purpose was to evaluate the characteristic of $^{14}C$ that can serve as a basis for reliable estimation of the environmental release at domestic PWR sites. $^{14}C$ is the most important nuclide in the inventory, since it contributes one of the main dose contributors in future release scenarios. The reason for this is its high mobility in the environment, biological availability and long half-life(5730yr). More recent studies - where a more detailed investigation of organic $^{14}C$ species believed to be formed in the coolant under reducing conditions have been made - show that the organic compounds not only are limited to hydrocarbons and CO. Possible organic compounds formed including formaldehyde, formic acid and acetic acid, etc. Under oxidizing conditions shows the oxidized carbon forms, possibly mainly carbon dioxide and bicarbonate forms. Measurements of organic and inorganic $^{14}C$ in various water systems were also performed. The $^{14}C$ inventory in the reactor water was found to be 3.1 GBq/kg in PWR of which less than 10% was in inorganic form. Generally, the $^{14}C$ activity in the water was divided equally between the gas- and water- phase. Even though organic $^{14}C$ compound shows that dominant species during the reactor operation, But during the releasing of $^{14}C$ from the plant stack, chemical forms of $^{14}C$ shows the different composition due to the operation conditions such as temperature, pH, volume control tank venting and shut down chemistry.

  • PDF

Study on the Lubricity Characteristics of Bio-heavy Oil for Power Generation by Various feedstocks (다양한 원료에 따른 발전용 바이오중유의 윤활 특성 연구)

  • Kim, Jae-Kon;Jang, Eun-Jung;Jeon, Cheol-Hwan;Hwang, In-Ha;Na, Byung-Ki
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.985-994
    • /
    • 2018
  • Bio-heavy oil for power generation is a product made by mixing animal fat, vegetable oil and fatty acid methyl ester or its residues and is being used as steam heavy fuel(B-C) for power generation in Korea. However, if the fuel supply system of the fuel pump, the flow pump, the injector, etc., which is transferred to the boiler of the generator due to the composition of the raw material of the bio-heavy oi, causes abrasive wear, it can cause serious damage. Therefore, this study evaluates the fuel characteristics and lubricity properties of various raw materials of bio-heavy oil for power generation, and suggests fuel composition of biofuel for power generation to reduce frictional wear of generator. The average value of lubricity (HFRR abrasion) for bio-heavy oil feedstocks for power generation is $137{\mu}m$, and it varies from $60{\mu}m$ to $214{\mu}m$ depending on the raw materials. The order of lubricity is Oleo pitch> BD pitch> CNSL> Animal fat> RBDPO> PAO> Dark oil> Food waste oil. The average lubricity for the five bio-heavy oil samples is $151{\mu}m$ and the distribution is $101{\mu}m$ to $185{\mu}m$. The order of lubricity is Fuel 1> Fuel 3> Fuel 4> Fuel 2> Fuel 5. Bio-heavy oil samples (average $151{\mu}m$) show lower lubricity than heavy oil C ($128{\mu}m$). It is believed that bio-heavy oil for power generation is composed of fatty acid material, which is lower in paraffin and aromatics content than heavy oil(B-C) and has a low viscosity and high acid value, resulting in inhibition of the formation of lubricating film by acidic component. Therefore, in order to reduce friction and abrasion, it is expected to increase the lubrication of fuel when it contains more than 60% Oleo pitch and BD pitch as raw materials of bio-heavy oil for power generation.