• Title/Summary/Keyword: Waste Vehicle

Search Result 98, Processing Time 0.022 seconds

Application of Side Scan Sonar to Disposed Material Analysis at the Bottom of Coastal Water and River (해저 및 하저 폐기물의 분석을 위한 양방향음파탐사기의 적용)

  • 안도경;이중우
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2002.11a
    • /
    • pp.147-153
    • /
    • 2002
  • Due to the growth of population and industrial development at the coastal cities, there has been much increase in necessity to effective control of the wastes into the coastal water and river. The amount of disposal at those waters has been increased rapidly and it is necessary for us to track of it in order to keep the water clean. The investigation and research related to the water quality in this region have been conducted continuously but the systematic survey of the disposed wastes at the bottom was neglected and/or minor. In this study we surveyed the status of disposed waste distribution at the bottom coastal water and river from the scanned images. The intensity of sound received by the side scan sonar tow vehicle from the sea floor provides information as to the general distribution and characteristics of the superficial wastes. The port and starboard side scanned images produced from a transducer borne on a tow fish connected by tow cable to a tug boat have the area with width of 22m∼112m, and band of 44m∼224m. All data are displayed in real-time on a high-resolution color display (1280 ${\times}$ 1024 pixels) together with position information by DGPS. From the field measurement and analysis of the recorded images, we could draw the location and distribution of bottom disposals. Furthermore, we made a database system which might be fundamental for planning the waste reception and process control system.

  • PDF

The Benefit-Cost analysis for Korea Lithium-ion Battery Waste Recycling project and promotion plans (국내 중대형 이차전지 재활용 사업의 경제성 분석 및 발전방안 연구)

  • Mo, Jung-Youn
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.326-332
    • /
    • 2018
  • Korea faces major changes in energy policy, which include eco-friendly and zero-nuclear power. On the other hand, there are very few policies for the waste-management of mid- to large-sized lithium-ion batteries, such as electric car batteries and energy storage systems, which are expected to increase explosively due to such energy policy changes. Therefore, this study estimated the amount of mid- to large-sized lithium ion batteries waste and performed economics analysis of a middle and large sized secondary battery recycling project. Based on the results, a policy alternative for the revitalization of the related lithium-ion battery recycling industry is suggested. As a result, the B / C ratio of a domestic mid - to large - sized lithium ion battery recycling project is 1.06, in which the benefit is higher than the cost, so the business is economic feasible. Although the recycling project's economic efficiency is high, the recycling industry has not been activated in Korea because the domestic demand for rechargeable batteries recycling is very low. To solve this problem, this study proposes a plan to activate the industry by adding lithium secondary batteries to the EPR (Extended Producer Responsibility) items.

A Study on the Recovery of Lantanum and Neodymium from Waste Battery Through the Recycling Process (폐 전지로부터 재활용 과정을 통한 란타넘, 네오디뮴 회수에 관한 연구)

  • Chae, Byungman;Lee, Seokhwan;Kim, Deuk-Hyeon;Seo, Eun-Ju;Kim, Hyunil;Lee, Seunghwan;Lee, Sangwoo
    • Clean Technology
    • /
    • v.26 no.2
    • /
    • pp.116-121
    • /
    • 2020
  • In this paper, the recycling of waste Ni-MH battery by-products for electric vehicle is studied. Although rare earths elements still exist in waste Ni-MH battery by-products, they are not valuable as materials in the form of by-products (such as an insoluble substance). This study investigates the recovering of rare earth oxide for solvent extraction A/O ratio, substitution reaction, and reaction temperature, and scrubbing of the rare earth elements for high purity separation. The by-product (in the form of rare earth elements insoluble powder) is converted into hydroxide form using 30% sodium hydroxide solution. The remaining impurities are purified using the difference in solubility of oxalic acid. Subsequently, Yttrium is isolated by means of D2EHPA (Di-[2-ethylhexyl] phosphoric acid). After cerium is separated using potassium permanganate, lanthanum and neodymium are separated using PC88A (2-ethylhexylphosphonic acid mono-2-ethylhexyl ester) and it is calcinated at a temperature of 800 ℃. As a result of the physical and chemical measurement of the calcined lanthanum and neodymium powder, it is confirmed that the powder is a microsized porous powder in an oxide form of 99.9% or more. Rare earth oxides are recovered from Ni-MH battery by-products through two solvent extraction processes and one oxidation process. This study has regenerated lanthanum and neodymium oxide as a useful material.

Exhaust Gas Recirculation System Applied to 56 kW Off-Road Vehicle to Satisfy the Tier 4 Interim Emission Regulation (Tier 4 Interim 배기규제 만족을 위한 56kW급 오프로드 차량 EGR 적용에 관한 연구)

  • Kang, Jeong-Ho;Han, Joon-Sup;Chung, Jae-Woo;Jeong, Gun-Woo;Cho, Gyu-Baek;Lim, Jung-Ho;Pyo, Su-Kang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.2
    • /
    • pp.217-224
    • /
    • 2012
  • In general, transportation sources include both on-road vehicles and off-road equipment. Off-road vehicles have usually used diesel engines, which have the disadvantage of high NOx emission. Common rail direct injection (CRDI) and after-treatment systems have been applied to meet the exhaust gas emission regulations for diesel vehicles. In the present, agricultural machinery has satisfied the Tier 3 emission regulations by using waste gate turbocharger (WGT) and internal exhaust gas recirculation (EGR). In this paper, the combustion and emission characteristics of an EGR system applied to a 56kW off-road vehicle in non-road transient cycle (NRTC) mode have been investigated. The EGR map was made from foundation experiments determining the EGR duty for all engine operating conditions, and then this map was applied to the NRTC mode. Consequently, the NOx emission was reduced by the EGR system, and the Tier 4 interim emission regulations were satisfied by using both the EGR system and an after-treatment system.

A Study on Effects of Energy Saving by Applying Energy Storage System (에너지저장시스템 적용에 의한 에너지절감 효과에 관한 연구)

  • An, Cheon-Heon;Lee, Han-Min;Kim, Gil-Dong;Lee, Hi-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.4
    • /
    • pp.582-589
    • /
    • 2009
  • The energy generated by braking vehicle would simply be converted into waste heat by its braking resistors if no other vehicle is accelerating at exactly the same time. Up to 45% of the tractive power of vehicles capable of returning energy to the power supply can be regenerated during braking and that this energy can be used to feed vehicles which are accelerating at the same time. Such synchronized braking and accelerating can not be coordinated, the ESS(energy storage system, here after) stores the energy generated during braking and discharges it again when a vehicle accelerates. The ESS is able to store and discharge energy extremely quickly, consequently enabling a complete exchange of energy between vehicles, even if they are not braking and accelerating at precisely the same time, as is most frequently the case in everyday service. The energy saving rate is related to the headway. If the headway is long/short, the energy saving goes up/down, When the headway is short, the ESS can not save much regenerative energy. The headway of SeoulMetro line 2 as the worst case is very short in Korea urban transit system. So, the energy saving rate will be very low. If the ESSs are applied to another railway system, we can expect that the effectiveness is better than the results of SeoulMetro line 2. This paper presents effects of energy saving obtained by applying the ESS to SeoulMetro line 2.

Current Situation on Biogas as a fuel for Vehicles (자동차용 연료로서 바이오가스의 현황 고찰)

  • Lee, Jin-Hui;Hwang, Won-Jun;Kim, Jae-Kon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.740-753
    • /
    • 2013
  • It is valuable research area regarding to developing manufacturing process of biogas from organic wastes take a side view of alternative for fossil energy and to improve the environmental atmosphere leads to decrease the greenhouse gas be discharged. The regulation which is prepared by environmental department shows that biogas as a transportation fuel is required to purity of above 95%, while it of natural gas is above 88%. However, in this situation it is necessary to prepare the regulation which is distributed by department of transportation as for the fuel be connected to vehicles as well in order to take step forward, and it is suggest to develop the technics of biogas this country's own original one, not be the technics imported from foreign countries, and also to turn to higher practical use of biogas for transportation area, since it shows far much less ratio have compared to other application areas.

Application of waste rubber to reduce the settlement of road embankment

  • Tafreshi, S.N. Moghaddas;Norouzi, A.H.
    • Geomechanics and Engineering
    • /
    • v.9 no.2
    • /
    • pp.219-241
    • /
    • 2015
  • In this paper, a series of repeated load tests were carried out on a 150 mm diameter plate simulative of vehicle passes, to demonstrate the benefits of soil-rubber shred mixture in decreasing the soil surface settlement of road embankment. The results show that the efficiency of rubber reinforcement is significantly a function of the rubber content, thickness of rubber-soil mixture and soil cap thickness over the mixture. Minimum surface settlement is provided by 2.5% of rubber in rubber-soil mixture, the thickness of mixture layer and soil cap of 0.5 times the loading surface diameter, giving values of 0.32-0.68 times those obtained in the unreinforced system for low and high values of amplitude of repeated load. In this installation, in contrast with unreinforced bed that shows unstable response, the rate of enhancement in settlement decreases significantly as the number of loading cycles increase and system behaves resiliently without undergoing plastic deformation. The findings encourage the use of rubber shreds obtained from non-reusable tires as a viable material in road works.

A study on simulation modeling of the underground space environment-focused on storage space for radioactive wastes (지하공간 환경예측 시뮬레이션 개발 연구-핵 폐기물 저장공간 중심으로)

  • 이창우
    • Tunnel and Underground Space
    • /
    • v.9 no.4
    • /
    • pp.306-314
    • /
    • 1999
  • In underground spaces including nuclear waste repository, prediction of air quantity, temperature/humidity and pollutant concentration is utmost important for space construction and management during the normal state as well as for determining the measures in emergency cases such as underground fires. This study aims at developing a model for underground space environment which has capabilities to take into account the effects of autocompression for the natural ventilation head calculation, to find the optimal location and size of fans and regulators, to predict the temperature and humidity by calculating the convective heat transfer coefficient and the sensible and latent heat transfer rates, and to estimate the pollutant levels throughout the network. The temperature/humidity prediction model was applied to a military storage underground space and the relative differences of dry and wet temperatures were 1.5 ~ 2.9% and 0.6 ~ 6.1%, respectively. The convection-based pollutant transport model was applied to two different vehicle tunnels. Coefficients of turbulent diffusion due to the atmospheric turbulence were found to be 9.78 and 17.35$m^2$/s, but measurements of smoke and CO concentrations in a tunnel with high traffic density and under operation of ventilation equipment showed relative differences of 5.88 and 6.62% compared with estimates from the convection-based model. These findings indicate convection is the governing mechanism for pollutant diffusion in most of the tunnel-type spaces.

  • PDF

Investigation on Sorting Efficiency for Recyclable Materials and Its Improvement Measure at Domestic Sorting Facility (국내 재활용품 선별시설에서 선별 현황 및 개선방안)

  • Kim, Joo-Sin;Pak, Daewon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.2
    • /
    • pp.15-26
    • /
    • 2017
  • This study was conducted to investigate and analyze the discharge characteristics of recyclable material from S-city, S-district, in order to improve the sorting efficiency in recycling sorting facility. The characteristics of recyclable materials collected were analyzed in three different scopes; source origin, collection and transportation, and sorting steps. The average of recyclable waste generation is $0.121kg/day^*man$. Regional collection period appears to be three times a week, and the density of mixed recyclable wastes showed the average of $202.4kg/m^3$ in the waste collection vehicle. In the analysis into the sorting steps, the average of carrying amount of mixed recycling products is 1,154.6 ton/month, the average of appeared density is $181kg/m^3$, the average amount of separated recycling products is 448.5kg/month, and the density of recycling residue is found out to be $48kg/m^3$. The sorting rate of recyclable material is 38.85% and the percentage of residues is 55.90%. Out of 7,744.8 tons of the total recyclable residues, 4,272.1 tons were found out to be possible recylable materials. As a result of increasing the recycling rate of residues, the encouragement of base-recycling, the automation and retrofit of sorting equipment, and energy recovery from recycling residue were discussed.

Study on a recipe of recycled bumper and pristine materials for application of vehicle parts (재활용 범퍼의 효율적인 적용을 위한 신재의 최적 배합비율에 관한 연구)

  • Son, Younggon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.175-180
    • /
    • 2016
  • Waste bumpers from out-of-service vehicles are recycled in the manufacturing process of plastic parts by incorporating pristine materials after removing the coated paint on a bumper. This study examined the chemical properties and mechanical properties of a mixture of recycled bumper and pristine materials as a function of the mixing ratio. When the pristine materials and the recycled bumper pieces were mixed, the stiffness (tensile strength and the flexural modulus) was provided by their composition averages. On the other hand, the toughness (Izod impact strength and the elongation-at-break) was lower than their composition averages (i.e., negative deviation). FTIR analysis showed that these results were due to the absence of the compatibility between the pristine materials and recycled bumper pieces. When the recycled bumper pieces were loaded at more than 30 wt. %, the toughness decreased drastically. A previous study showed that a paint removal efficiency up to 80 wt.% was easily attainable. The other 20 wt.% of paint on the bumper is very difficult to remove. Therefore, this study examined the mechanical properties of a mixture of recycled bumper pieces containing the unremoved paint and recycled bumper pieces without paint. When the recycled bumper pieces containing the unremoved paint were incorporated in only small quantities, the mechanical properties were decreased to a great extent. These results show that the paint removal efficiency is very important in the recycled bumper industry.