• Title/Summary/Keyword: Waste Salt

Search Result 333, Processing Time 0.055 seconds

The Gasification & Melting Treatment Technology of Waste (폐기물 열분해 가스화용융 기술)

  • Huh, Il-Sang
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.133-138
    • /
    • 2005
  • The worldwide trend of waste treatment technology is rapidly transferring from "incineration system" to "gasification & melting system" which can derive the resources from waste and charge no more environmental burden to nature. And therefore it is necessary to adopt gasification & melting system to prevent the land pollution and to solve the problem of landfill area. Among several thermal waste treatment processes gasification and melting system is the representative process which can transfer waste to resources such as syn-gas, molten slag, metal hydroxide, mixed salt and sulfur through the process of compaction, pyrolysis, gasification and melting.

  • PDF

Reuse Technology of LiCl Salt Waste Generated from Electrolytic Reduction Process of Spent Oxide Fuel (전해환원공정발생 LiCl 염폐기물 재생기술)

  • Cho, Yung-Zun;Jung, Jin-Seok;Lee, Han-Soo;Kim, In-Tae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.1
    • /
    • pp.57-63
    • /
    • 2010
  • Layer crystallization process was tested for the separation(or concentration) of cesium and strontium fission products in a LiCl waste salt generated from an electrolytic reduction process of a spent oxide fuel. In a crystallization process, impurities (CsCl and $SrCl_2$) are concentrated in a small fraction of the LiCl salt by the solubility difference between the melt phase and the crystal phase. Based on the phase diagram of LiCl-CsCl-$SrCl_2$ system, the separation possibility by using crystallization was determined and the molten salt temperature profile during layer crystallization operation was predicted by using mathematical calculation. In the layer crystallization process, the crystal growth rate strongly affects the crystal structure and therefore the separation efficiency. In the conditions of about 20-25 l/min cooling air flow rate and less than 0.2g/min/$cm^2$ crystal flux, the separation efficiency of both CsCl and $SrCl_2$ showed about 90% by the layer crystallization process, assuming a LiCl salt reuse rate of 90wt%.