• Title/Summary/Keyword: Waste Removal

Search Result 1,012, Processing Time 0.024 seconds

Application of tire powder and food waste compost as biofilter materials to degrade volatile organic compounds

  • Oh, Dong-Ik;Lee, Jung-Ku;Kyoungphile Nam;Kim, Jae-Young
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.117-121
    • /
    • 2001
  • The present study has been conflicted to verify the applicability of tire powder and food waste compost as biofilter materials to degrade volatile organic compounds. Batch and column tests were performed to determine the optimum ratio of tire powder to compost and the appropriate mixing type of two materials for removal of the selected VOCs, i.e., benzene, ethylbenzene, PCE, and TCE. According to batch tests, tire powder and compost mixture had faster removal rate than the compost. The biofilter column filled with tire powder and compost showed better VOC removal efficiency than that filled with only tire powder. In this study, the best removal rate was observed in the sandwich type column test of which the tire : compost weight ratio was 1:2

  • PDF

Semi-pilot Scaled Hybrid Process Treatment of Malodorous Waste Air: Performance of Hybrid System Composed of Biofilter Packed with Media Inoculated with Thiobacillus sp. IW and Return-sludge and Photocatalytic Reactor (악취폐가스의 세미파일럿 규모 하이브리드 공정 처리: Thiobacillus sp. IW 및 반송슬러지를 접종한 담체를 충전한 바이오필터와 광촉매반응기로 구성된 하이브리드시스템의 운전)

  • Lee, Eun Ju;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.52 no.2
    • /
    • pp.191-198
    • /
    • 2014
  • A semi-pilot hybrid system composed of a photocatalytic reactor and a biofilter was operated under various operating conditions in order to treat malodorous waste air containing both hydrogen sulfide and ammonia which are major air pollutants emitted from composting factories and many publicly owned treatment works (POTW). When both hydrogen sulfide and ammonia contained in malodorous waste air were treated simultaneously by a biofilter system, its performance of ammonia removal was much more poor than that by a biofilter system treating waste air containing only ammonia, unlike its performance of hydrogen sulfide removal. For semi-pilot hybrid system, the removal efficiencies of hydrogen sulfide and ammonia turned out to be ca. 83 and 65%, respectively. Therefore, for semi-pilot hybrid system, the removal efficiencies of hydrogen sulfide and ammonia was increased by ca. 4 and 30%, respectively, compared to those of semi-pilot biofilter system (control). In addition, the maximum elimination capacities of hydrogen sulfide and ammonia for semi-pilot hybrid system turned out to be ca. 60 and $37g/m^3/h$, respectively. These maximum elimination capacities of hydrogen sulfide and ammonia were estimated to be ca. 9.1% and ca. 23.3% greater than those for semi-pilot biofilter system (control), respectively. Therefore, the semi-pilot hybrid system contributed the enhancement of removal efficiency and the maximum elimination capacity of ammonia in a higher degree than that of hydrogen sulfide, compared to the semi-pilot biofilter system.

Treatment of Laboratory Wastewater Using Waste Egg Shells (폐달걀껍질을 이용한 실험실폐수처리)

  • 김은호;정유진;김형석
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.3
    • /
    • pp.124-130
    • /
    • 1998
  • This study was to examine the utilization of waste egg snells for removal of heavy metals in laboratory wastewater. It was estimated that pH increasing formed heavy metals into a hydroxide and then settled to remove them. Removal rate of heavy metals were increased as increased dosage, low adsorbate concentration and passed reaction time. Average adsorption volumes of Cr, Cu, Mn and Pb per g were about 1.21 mg, 1.1 mg, 0.96 mg and 1.04 mg, respectively. If we reflected the adsorption capacity(k) and adsorption intensity(1/n) of Freundlich isotherm, we couldn't consider waste egg shells as a good adsorbent. It seemed that heavy metals contained in complex wastewater was removed to be influenced by inital pH, solubilities with passed reaction rime and competitive reaction.

  • PDF

The utilization of waste seashell for high temperature desulfurization

  • Kim, Young-Sik;Kim, Taek-Geun;Sim, Eon-Bong;Seo, Jeong-Min
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2005.12a
    • /
    • pp.66-71
    • /
    • 2005
  • The waste seashells were used for the removal of hydrogen sulfide from a hot gas stream. The sulphidation of waste seashells with $H_2S$ was studied in a thermogravimetric analyzer at temperature between 600 and 800$^{\circ}C$. The desulfurization performance of the waste seashell sorbents was experimentally tested in a fixed bed reactor system. Sulfidation experiments performed under reaction conditions similar to those at the exit of a coal gasifier showed that preparation procedure and technique, the type and the amount of seashell, and the size of the seashell affect the $H_2S$ removal capacity of the sorbents. The pore structure of fresh and sulfided seashell sorbents was analyzed using mercury porosimetry, nitrogen adsorption, and scanning electron microscopy.

  • PDF

Reaction of $H_2S$ with Sorbents of Waste Seashell

  • Kim, Young-Sik;Kim, Taek-Gyun;Lee, Yong-Du;Shim, Eon-Bong;Jung, Jong-Hyeon
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2005.06a
    • /
    • pp.378-380
    • /
    • 2005
  • The waste seashells were used for the removal of hydrogen sulfide from a hot gas stream, The sulphidation of waste seashells with H$_2$S was studied in a thermogravimetric analyzer at temperature between 600 and 800${\circ}$C . The desulfurization performance of the waste seashell sorbents was experimentally tested in a fixed bed reactor system. Sulfidation experiments performed under reaction conditions similar to those at the exit of a coal gasifier showed that preparation procedure and technique, the type and the amount of seashell, and the size of the seashell affect the H2S removal capacity of the sorbents. The pore structure of fresh and sulfided seashell sorbents was analyzed using mercury porosimetry, nitrogen adsorption, and scanning electron microscopy.

  • PDF

Electric power generation from treatment of food waste leachate using microbial fuel cell

  • Wang, Ze Jie;Lim, Bong Su
    • Environmental Engineering Research
    • /
    • v.22 no.2
    • /
    • pp.157-161
    • /
    • 2017
  • Simultaneous treatment of food waste leachate and power generation was investigated in an air-cathode microbial fuel cell. A TCOD removal efficiency of $95.4{\pm}0.3%$ was achieved for an initial COD concentration of 2,860 mg/L. Maximum power density ranged was maximized at $1.86W/m^3$, when COD concentration varied between 60 mg/L and 2,860 mg/L. Meanwhile, columbic efficiency was determined between 1.76% and 11.07% for different COD concentrations. Cyclic voltammetric data revealed that the oxidation peak voltage occurred at -0.20 V, shifted to about -0.25 V. Moreover, a reduction peak voltage at -0.45 V appeared when organic matters were exhausted, indicating that reducible matters were produced during the decomposition of organic matters. The results showed that it was feasible to use food waste leachate as a fuel for power generation in a microbial fuel cell, and the treatment efficiency of the wastewater was satisfied.

Application of a Novel Carbon Regeneration Process for Disposal of APEG Treatment Waste

  • 류건상;Shubender Kapila
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.8
    • /
    • pp.814-818
    • /
    • 1997
  • The chemical waste treatment, APEG (alkali/polyethylene glycol) process has been shown to be effective for the dechlorination of PCBs in transformer oil. Considerable amount of PCBs, however, still remains in the waste exceeding the 25-50 ppm limit set by regulatory agency. A new thermal regeneration technology has been developed in our laboratory for disposal of hazardous organic wastes. Due to the limited oxidation of carbon surface through the reverse movement of flame front to oxidant flow, this technology was termed counterflow oxidative system (COS). Specially, the oxidant flow in the COS process is a principal parameter which determines the optimum conditions regarding acceptable removal and destruction efficiency of adsorbed organic wastes at minimal carbon loss. The COS process, under optimum conditions, was found to be very effective and the removal and destruction efficiency of 99.99% or better was obtained for residual PCBs in the waste while bulk (≥90%) of carbon was recovered. Any toxic formation of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzo furans (PCDFs) were not detected in the regenerated carbon and impinger traps. The results of surface area measurement showed that the adsorptive property of regenerated carbon is mostly reclaimed during the COS process.

A Study on Removal of Harmful, Heavy Metals in Fly Ash from Municipal Incinerator

  • Nakahiro, Yoshitaka
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.489-493
    • /
    • 2001
  • Big cities in Japan have serious problems due to the shortage of new reclaimed land for municipal wastes. If harmful heavy metals such as cadmium, lead, copper and etc. are contained in the municipal waste combustion residues, they are not able to fill up according to the environmental law in Japan. In this study, the removal of heavy metals in the fly ash (EP ash) was dealt with chloridizing vaporization method. EP ash as a non-hazardous materials is utilized as covering materials, road bed, and building materials.

  • PDF