• Title/Summary/Keyword: Waste Lithium-ion battery

Search Result 37, Processing Time 0.029 seconds

The Current Situation for Recycling of Lithium Ion Batteries

  • Hiroshi Okamoto;Lee, Sang-Hoon
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.252-256
    • /
    • 2001
  • The rapid development of communication equipment and information processing technology has led to a constant improvement in cordless communication. Lithium ion batteries used in cellular phones and laptop computers, in particular, have been in the forefront of the above revolution. These batteries use high value added raw materials and have a high and stable energy output and are increasingly coming into common use. The development of the material for the negative terminal has led to an improvement in the quality and efficiency of the batteries, whereas a reduction in the cost of the battery by researching new materials for the positive anode has become a research theme by itself. These long life batteries, it is being increasingly realized, can have value added to them by recycling. Research is increasingly being done on recycling the aluminum case and the load casing for the negative diode. This paper aims to introduce the current situation of recycling of lithium ion batteries. 1. Introduction 2. Various types of batteries and the situation of their recycling and the facts regarding recycling. 3. Example of cobalt recycling from waste Lithium ion secondary cell. 3-1) Flow Chart of Lithium ion battery recycling 3-2) Materials that make a lithium ion secondary cell. 3-3) Coarse grinding of Lithium ion secondary cell, and stabilization of current discharge 3-4) Burning 3-5) Grinding 3-6) Magnetic Separation 3-7) Dry sieving 3-8) Dry Classifying 3-9) Content Ratio of recycled cobalt parts 3-10) Summary of the Line used for the recovery of Cobalt from waste Lithium ion battery. 4. Conclusion.

  • PDF

Lithium Recovery from NCM Lithium Ion Battery by Hydrogen Reduction Followed by Water Leaching (NCM계 리튬이온 배터리 양극재의 수소환원과 수침출에 의한 리튬 회수)

  • So-Yeong Lee;So-Yeon Lee;Dae-Hyeon Lee;Ho-Sang Sohn
    • Resources Recycling
    • /
    • v.33 no.1
    • /
    • pp.15-21
    • /
    • 2024
  • The demand for electric vehicles powered by lithium-ion batteries is continuously increasing. Recovery of valuable metals from waste lithium-ion batteries will be necessary in the future. This research investigated the effect of reaction temperature on the lithium recovery ratio from hydrogen reduction followed by water leaching from lithium-ion battery NCM-based cathode materials. As the reaction temperature increased, the weight loss ratio observed after initiation increased rapidly owing to hydrogen reduction of NiO and CoO; at the same time, the H2O amount generated increased. Above 602 ℃, the anode materials Ni and Co were reduced and existed in the metallic phases. As the hydrogen reduction temperature was increased, the Li recovery ratio also increased; at 704 ℃ and above, the Li recovery ratio reached a maximum of approximately 92%. Therefore, it is expected that Li can be selectively recovered by hydrogen reduction as a waste lithium-ion battery pretreatment, and the residue can be reprocessed to efficiently separate and recover valuable metals.

A Study on the Life Prediction of Lithium Ion Batteries Based on a Convolutional Neural Network Model

  • Mi-Jin Choi;Sang-Bum Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.118-121
    • /
    • 2023
  • Recently, green energy support policies have been announced around the world in accordance with environmental regulations, and asthe market grows rapidly, demand for batteries is also increasing. Therefore, various methodologies for battery diagnosis and recycling methods are being discussed, but current accurate life prediction of batteries has limitations due to the nonlinear form according to the internal structure or chemical change of the battery. In this paper, CS2 lithium-ion battery measurement data measured at the A. James Clark School of Engineering, University of Marylan was used to predict battery performance with high accuracy using a convolutional neural network (CNN) model among deep learning-based models. As a result, the battery performance was predicted with high accuracy. A data structure with a matrix of total data 3,931 ☓ 19 was designed as test data for the CS2 battery and checking the result values, the MAE was 0.8451, the RMSE was 1.3448, and the accuracy was 0.984, confirming excellent performance.

Hydrogen Reduction Behavior of NCM-based Lithium-ion Battery Cathode Materials (NCM계 리튬이온 배터리 양극재의 수소환원 거동)

  • So-Yeong Lee;So-Yeon Lee;Dae-Hyeon Lee;Ho-Sang Sohn
    • Journal of Powder Materials
    • /
    • v.31 no.2
    • /
    • pp.163-168
    • /
    • 2024
  • As the demand for lithium-ion batteries for electric vehicles is increasing, it is important to recover valuable metals from waste lithium-ion batteries. In this study, the effects of gas flow rate and hydrogen partial pressure on hydrogen reduction of NCM-based lithium-ion battery cathode materials were investigated. As the gas flow rate and hydrogen partial pressure increased, the weight loss rate increased significantly from the beginning of the reaction due to the reduction of NiO and CoO by hydrogen. At 700 ℃ and hydrogen partial pressure above 0.5 atm, Ni and Li2O were produced by hydrogen reduction. From the reduction product and Li recovery rate, the hydrogen reduction of NCM-based cathode materials was significantly affected by hydrogen partial pressure. The Li compounds recovered from the solution after water leaching of the reduction products were LiOH, LiOH·H2O, and Li2CO3, with about 0.02 wt% Al as an impurity.

The Benefit-Cost analysis for Korea Lithium-ion Battery Waste Recycling project and promotion plans (국내 중대형 이차전지 재활용 사업의 경제성 분석 및 발전방안 연구)

  • Mo, Jung-Youn
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.326-332
    • /
    • 2018
  • Korea faces major changes in energy policy, which include eco-friendly and zero-nuclear power. On the other hand, there are very few policies for the waste-management of mid- to large-sized lithium-ion batteries, such as electric car batteries and energy storage systems, which are expected to increase explosively due to such energy policy changes. Therefore, this study estimated the amount of mid- to large-sized lithium ion batteries waste and performed economics analysis of a middle and large sized secondary battery recycling project. Based on the results, a policy alternative for the revitalization of the related lithium-ion battery recycling industry is suggested. As a result, the B / C ratio of a domestic mid - to large - sized lithium ion battery recycling project is 1.06, in which the benefit is higher than the cost, so the business is economic feasible. Although the recycling project's economic efficiency is high, the recycling industry has not been activated in Korea because the domestic demand for rechargeable batteries recycling is very low. To solve this problem, this study proposes a plan to activate the industry by adding lithium secondary batteries to the EPR (Extended Producer Responsibility) items.

Degradation diagnosis of parallel-connected lithium-ion battery cells via non-constructive electrochemical approach (병렬 연결된 리튬이온전지 셀의 비파괴 전기화학적 열화상태 진단)

  • Lee, Garam;Jeong, Jiyoon;Kim, Yong-Tae;Choi, Jinsub
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.4
    • /
    • pp.231-235
    • /
    • 2022
  • As environmental pollution becomes more serious, the demand for electric vehicles (EVs) and lithium-ion batteries for electric vehicles is rapidly increasing worldwide. Accordingly, the amount of waste batteries is also increasing, and a technology for recycling and reusing them is required. In order to reuse a used battery, it is necessary to non-destructively diagnose the deterioration condition of the battery. Therefore, in this study, we investigate the diagnosis of degradation for parallel-connected lithium-ion battery cells through non-constructive electrochemical approach. As the number of parallel-connected cells increased, in addition to linear degradation, abrupt step-like degradation occurred, which is attributed to the predominant degradation of specific cells. In addition, it is confirmed that deteriorated cells among multiple cells can be distinguished through a simple measurement of open circuit voltage (OCV).

Bio-dissolution of waste of lithium battery industries using mixed acidophilic microorganisms isolated from Dalsung mine (달성 광산(鑛山)에서 채취(採取)한 혼합(混合) 호산성 균주를 이용(利用)한 폐리튬 밧데리의 바이오 침출(浸出))

  • Mishra, Debaraj;Kim, Dong-Jin;Ahn, Jong-Gwan;Ralph, David E.
    • Resources Recycling
    • /
    • v.17 no.2
    • /
    • pp.30-35
    • /
    • 2008
  • Mixed acidophilic bacteria were approached for leaching of cobalt and lithium from wastes of lithium ion battery industries. The growth substrates for the mixed mesophilic bacteria are elemental sulfur and ferrous ion. Bioleaching of the metal was due to the protonic action of sulfate ion on the metals present in the waste. It was investigated that bioleaching of cobalt was faster than lithium. Bacterial action could leach out about 80 % of cobalt and 20 % of lithium from the solid wastes within 12 days of the experimental period. Higher solid/liquid ratio was found to be detrimental for bacterial growth due to the toxic nature of the metals. At high elemental sulfur concentration, the sulfur powder was observed to be in undissolved form and hence the leaching rate also decreased with increase of sulfur amount.

Research Trend on Performance Diagnosis and Restoration Technology of Waste Lithium Ion Battery for Energy Storage Systems (에너지저장장치용 폐리튬이온배터리 성능 진단 및 복원 기술동향)

  • Lee, Kiyoug;Choi, Jinsub;Lee, Jaeyoung
    • Applied Chemistry for Engineering
    • /
    • v.30 no.3
    • /
    • pp.290-296
    • /
    • 2019
  • Lithium-ion batteries are one of the most interesting devices in a number of energy storage systems. In particular, the usage of energy storage devices is increasing due to an increase in demand for renewable energy as a distributed power supply source, stable supply of electric power, and expansion of electric vehicles. Of late, the recycling and restoration technology of waste lithium ion batteries due to the increase in its usage amount as the energy storage system is a socially and economically important research field. In this review, we intend to describe the performance diagnosis, recycling or restoration technology of lithium ion battery and its potential development.

Correlation between Lithium Concentration and Ecotoxicoloigy in Lithium Contained Waste Water (리튬 함유 폐액에서의 리튬 농도와 생태독성과의 연관성 연구)

  • Jin, Yun-Ho;Kim, Bo-Ram;Kim, Dae-Weon
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.33-38
    • /
    • 2021
  • Demand for lithium-based secondary batteries is greatly increasing with the explosive growth of related industries, such as mobile devices and electric vehicles. In Korea, there are several top-rated global lithium-ion battery manufacturers accounting for 40% of the global secondary battery business. Most discarded lithium secondary batteries are recycled as scrap to recover valuable metals, such as Nickel and Cobalt, but residual wastes are disposed of according to the residual lithium-ion concentration. Furthermore, there has not been an attempt on the possibility of water discharge system contamination due to the concentration of lithium ions, and the effluent water quality standards of public sewage treatment facilities are becoming stricter year after year. In this study, the as-received waste water generated from the cathode electrode coating process in the manufacturing of high-nickel-based NCM cathode material used for high-performance and long-term purposes was analyzed. We suggested a facile recycling process chart for waste water treatment. We revealed a correlation between lithium-ion concentration and pH effect according to the proposed waste water of each recycling process through analyzing standard water quality tests and daphnia ecological toxicity. We proposed a realistic waste water treatment plan for lithium electrode manufacturing plants via comparison with other industries' ecotoxicology.

A Study on the prediction of SOH estimation of waste lithium-ion batteries based on SVM model (서포트 벡터 머신 기반 폐리튬이온전지의 건전성(SOH)추정 예측에 관한 연구)

  • KIM SANGBUM;KIM KYUHA;LEE SANGHYUN
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.727-730
    • /
    • 2023
  • The operation of electric automatic windows is used in harsh environments, and the energy density decreases as charging and discharging are repeated, and as soundness deteriorates due to damage to the internal separator, the vehicle's mileage decreases and the charging speed slows down, so about 5 to 10 Batteries that have been used for about a year are classified as waste batteries, and for this reason, as the risk of battery fire and explosion increases, it is essential to diagnose batteries and estimate SOH. Estimation of current battery SOH is a very important content, and it evaluates the state of the battery by measuring the time, temperature, and voltage required while repeatedly charging and discharging the battery. There are disadvantages. In this paper, measurement of discharge capacity (C-rate) using a waste battery of a Tesla car in order to predict SOH estimation of a lithium-ion battery. A Support Vector Machine (SVM), one of the machine models, was applied using the data measured from the waste battery.