• Title/Summary/Keyword: Waste Heat Recycling

Search Result 132, Processing Time 0.024 seconds

Development of a Sustainable Waste Paint Treatment Process for Waste Resource Recovery Improvement (폐기물 자원회수 향상을 위한 친환경 폐페인트 처리프로세스 개발)

  • Moon, Jongwook;Hwang, Suckho;Kim, Daeyoung
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.1
    • /
    • pp.73-82
    • /
    • 2022
  • Waste paint, one of the specified wastes in Korea, is currently treated entirely by incineration treatment method, and is hardly recycled compared to other wastes. Incineration treatment method also causes environmental problems such as air pollution. Thus, this study breaks away from the existing incineration treatment method of waste paint and switch to a method of pretreatment operation through evaporation, condensation, and thermal decomposition by temperature control. and then proposes a sustainable waste paint treatment process that can be recycled as an alternative energy heat source. If a new method of disposing of waste paint and technology for recycling are developed and disseminated, it is expected that the effect will be large from an economic and environmental point of view.

Disposal and Waste-to-Fuel of Infected Poultry with Avian Influenza(AI) Using Thermal Hydrolysis Reaction (열가수분해 반응을 이용한 조류인플루엔자(AI) 감염 가금류의 사체처리 및 연료화)

  • Song, Chul-Woo;Kim, Nam-Chan;Jeong, Guk;Ryu, Jae-Keun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.4
    • /
    • pp.49-57
    • /
    • 2016
  • In this study, a thermal hydrolysis technology was used to treat the poultry carcasses that were killed due to Avian Influenza (AI) occurrence, as well as to determine the possibility of fueling for the resultant products. Experimental results showed that the poultry carcasses were liquefied except for sand, and showed the optimum efficiency at $190^{\circ}C$ and operating time of 60 minutes. It has been shown that liquid products obtained after thermal hydrolysis has good conditions for fuel conversion since it had high carbon contents and calorific value, as well as low ash content. In addition, it was possible to operate the thermal hydrolysis facility by using only the waste heat generated in the combustion without injecting the auxiliary fuel, and the exhaust gas generated in the combustion has a small influence on the atmosphere.

Hydration Characteristics of Cement Paste Added Liquid and Neutralized Red Mud (액상 및 중화 레드머드를 첨가한 시멘트 페이스트의 수화특성)

  • Kang, Hye Ju;Kang, Suk Pyo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.104-105
    • /
    • 2020
  • Red mud is a highly alkaline waste by-product of the aluminum industry. Although recycling of red mud is being actively researched, a feasible technological solution has not been found yet. In this study, we propose that neutralization of red mud alkalinity could assist in its use as a construction material. Neutralized red mud ( pH 6-8) was prepared by adding sulfuric acid to liquefied red mud (pH 10-12). After adding liquid and neutralized red mud to the cement paste, the heat of hydration was measured. As a result of the experiment, the calorific value of the cement paste with liquid red mud was lowered and delayed compared to the cement paste with neutralized red mud.

  • PDF

A study on inspection methods for waste treatment facilities(I): Derivation of impact factor and mass·energy balance in waste treatment facilities (폐기물처리시설의 세부검사방법 마련연구(I): 공정별 주요인자 도출 및 물질·에너지수지 산정)

  • Pul-Eip Lee;Eunhye Kwon;Jun-Ik Son;Jun-Gu Kang;Taewan Jeon;Dong-Jin Lee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.1
    • /
    • pp.69-84
    • /
    • 2023
  • Despite the continuous installation and regular inspection of waste treatment facilities, complaints about excessive incineration and illegal dumping stench continue to occur at on-site treatment facilities. In addition, field surveys were conducted on the waste treatment facilities currently in operation (6 type) to understand the waste treatment process for each field, to grasp the main operating factors applied to the inspection. In addition, we calculated the material·energy balance for each main process and confirmed the proper operation of the waste disposal facility. As a result of the site survey, in the case of heat treatment facilities such as incineration, cement kilns, and incineration heat recovery facilities, the main factors are maintenance of the temperature of the incinerator required for incineration and treatment of the generated air pollutants, and in the case of landfill facilities Retaining wall stability, closed landfill leachate and emission control emerged as major factors. In the case of sterilization and crushing facilities, the most important factor is whether or not sterilization is possible (apobacterium inspection).In the case of food distribution waste treatment facilities, retention time and odor control during fermentation (digestion, decomposed) are major factors. Calculation results of material balance and energy resin for each waste treatment facility In the case of incineration facilities, it was confirmed that the amount of flooring materials generated is about 14 % and the amount of scattering materials is about 3 % of the amount of waste input, and that the facility is being operated properly. In addition, among foodwaste facilities, in the case of an anaerobic digestion facility, the amount of biogas generated relative to the amount of inflow is about 17 %, and the biogas conversion efficiency is about 81 %, in the case of composting facility, about 11 % composting of the inflow waste was produced, and it was comfirmend that all were properly operated. As a result, in order to improve the inspection method for waste treatment facilities, it is necessary not only to accumulate quantitative standards for detailed inspection methods, but also to collect operational data for one year at the time of regular inspections of each facility, Grasping the flow and judging whether or not the treatment facility is properly operated. It is then determined that the operation and management efficiency of the treatment facility will increase.

Low Carbonization Technology & Traceability for Sustainable Textile Materials (지속가능 섬유 소재 추적성과 저탄소화 공정)

  • Min-ki Choi;Won-jun Kim;Myoung-hee Shim
    • The Korean Fashion and Textile Research Journal
    • /
    • v.25 no.6
    • /
    • pp.673-689
    • /
    • 2023
  • To realize the traceability of sustainable textile products, this study presents a low-carbon process through energy savings in the textile material manufacturing process. Traceability is becoming an important element of Life Cycle Assessment (LCA), which confirms the eco-friendliness of textile products as well as supply chain information. Textile products with complex manufacturing processes require traceability of each step of the process to calculate carbon emissions and power usage. Additionally, an understanding of the characteristics of the product planning-manufacturing-distribution process and an overall understanding of carbon emissions sources are required. Energy use in the textile material manufacturing stage produces the largest amount of carbon dioxide, and the amount of carbon emitted from processes such as dyeing, weaving and knitting can be calculated. Energy saving methods include efficiency improvement and energy recycling, and carbon dioxide emissions can be reduced through waste heat recovery, sensor-based smart systems, and replacement of old facilities. In the dyeing process, which uses a considerable amount of heat energy, LNG, steam can be saved by using "heat exchangers," "condensate management traps," and "tenter exhaust fan controllers." In weaving and knitting processes, which use a considerable amount of electrical energy, about 10- 20% of energy can be saved by using old compressors and motors.

Use of By-product Hydrated Lime as Alkali Activator of Blast Furnace Slag Blended Cement (고로수쇄(高爐水碎)슬래그 혼합(混合)시멘트의 알칼리 자극제(刺戟劑)로 부산소석회(副産消石灰)의 활용(活用))

  • Cho, Jin-Sang;Yu, Young-Hwan;Choi, Moon-Kwan;Cho, Kye-Hong;Kim, Hwan;Yeon, Kyu-Seok
    • Resources Recycling
    • /
    • v.19 no.3
    • /
    • pp.33-44
    • /
    • 2010
  • In this study, the possibility of utilizing carbide lime waste, obtained from the generation of acetylene process, as a alkali activator of blast furnace slag cement was investigated. The physical and chemical analysis of the carbide lime waste was studied and three types lime waste in order to investigate behaviour as alkali activator were used. Lime wastes were added 0, 10, 20 and 30 wt.% in blast furnace slag and blast furnace slag containing lime waste were added 0, 10, 30 and 50 wt.% in OPC. As a result of analysis of hydration properties, in the case of calcium hydroxide rehydrated after heat treatment at $800^{\circ}C$, it was higher hydration rate than other specimens. For the results of compressive strength test, when lime waste passed 325 mesh sieve and rehydrated calcium hydroxide were used, it was higher compressive strength than OPC from hydration 7days. At OPC50 wt.%-BFS45 wt.%-AA5 wt.% system using lime waste of 325 mesh under, the highest compressive strength appeared.

A Study on the Resource Development by Heat Dissolution in Electric Arc Furnace of Clinker generated in the Recycling Process of Electric Arc Furnace Dust (전기로 제강분진의 재활용과정에서 발생된 Clinker의 전기로에서의 가열용해에 의한 자원화에 관한 연구)

  • Jae-hong Yoon;Chi-hyun Yoon;Akio Honjo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.1
    • /
    • pp.22-32
    • /
    • 2023
  • In general, when scrap is dissolved in an electric arc furnace, the amount of electric furnace steel dust (EAFD) generated is about 1.5% of the scrap charge amount, and the electric furnace steel dust collected by the bag filter is charged into the Rotary Kiln or Rotary Hearth Furnace (RHF), and the zinc component is recovered as crude zinc oxide, at which time a clinker of Fe-Base is generated. In this research, first, for the efficient resource conversion of electric furnace steel dust, a reduction and roasting experiment was conducted and the reaction kinetics was examined. As a result of the experiment, it was observed that the reduction and roasting reaction was actively conducted in the range of 1100~1150℃, and melting occurred in the range of 1250℃. In the past, this clinker was widely used as a roadbed material for road construction and an Fe-Source for cement production, but in recent years, it has been mainly reclaimed due to strengthening environmental standards. However, landfill treatment is by no means a desirable treatment method due to environmental pollution caused by leachate, expensive landfill costs, and waste of Fe resources. Therefore, in order to more actively recycle the Fe component in the clinker, first of all the clinker was pulverized into an optimal particle size, and anthracite and binder (starch) were added to the magnetic material obtained by specific gravity and magnetic separation for briquet. As a experimental results, it was possible to efficiently separate clinker as Fe component and other slag component by specific gravity and magnetic force. As a results of loading and dissolving the manufactured briquet clinker in an electric arc furnace, it was observed that the unit of power and production yield were clearly improved and the carbon addition effect in molten metal was also somewhat.

A study on inspection methods for waste treatment facilities(II): Derivation of problems and improvement direction in inspection methods (폐기물처리시설의 세부검사방법 마련연구(II): 세부검사방법 문제점도출 및 개선방향 설정)

  • Pul-Eip Lee;Eunhye Kwon;Jun-Ik Son;Jun-Gu Kang;Taewan Jeon;Dong-Jin Lee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.1
    • /
    • pp.85-100
    • /
    • 2023
  • In this study, in order to improve the installation periodical inspection method of waste treatment facilities, we conducted on-site surveys of waste treatment facilities classified into six fields, grasped the problems of inspection methods, and made improvements accordingly. And revised the inspection method for waste treatment facilities. As a result, in the field of incineration and incineration heat recovery, inspection methods such as total temperature measurement and one-year TMS data comparison using a thermal imaging camera were established. And for the safety of the inspected person, it was applied so that the waste can be replaced with a document without opening it. In the case of landfill facilities, the details regarding the use of video information processing equipment and the management of facilities covering the upper part of the landfill facility are presented in the law, but the items that do not have a inspection methods were applied to the inspection method. In the case of Food Waste Treatment Facility, inspection methods were put in place to ensure compliance with standards for foul-smelling fish in odor control, a major cause of complaints. As a result, 10 out of 18 improvement proposals were reflected in the incineration and sterilization grinding, cement kiln, and incineration heat recovery facilities, and 11 out of 12 improvement proposals were reflected in the landfill facility. In the case of food distribution waste treatment facilities, 10 out of 12 improvement proposals were reflected, and a total of 31 inspection methods were improved.

Study on the Content Characteristics of Waste Containing Brominated Flame Retardant (브롬화난연제 함유 폐기물의 함량 특성 연구)

  • Yeon, Jin-Mo;Kim, Woo-Il;Hwang, Dong-Gun;Cho, Na-Hyeon;Kim, Ki-Heon;Lee, Young-Ki
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.8
    • /
    • pp.692-700
    • /
    • 2018
  • In this study, the results of PBDEs and HBCDs of the products and waste that contain BFRs such as domestic electronic products, automobiles and textile products were compared with international management standards, and their excess rates were calculated. Deca-BDE was detected among the PBDEs in TV rear cover plastics, car seats, automotive interior plastics, and automobile shredding residues of products and waste containing BFRs. The comparison with Basel Convention management standards (1,000 mg/kg) for PBDE-containing wastes (4 types in total) shows that the excess rate of all samples was less than 1.5%. The estimated excess rate compared to the EU and Basel convention management standards (1,000 mg/kg) for PBDEs (4 species + deca-BDE) and TV rear cover plastics was 37.5% (30 of 80 samples exceeded the standards). The estimated excess rate compared to the Basel convention management standards (1,000 mg/kg) for HBCD, building materials products and waste was 15.7% (17 of 108 samples exceeded the standards). In the case of PBDEs, it is necessary to remove only the rear cover of CRT TV among the electric and electronic products and treat it in the flame retardant treatment facility to improve the recycling collection system. In the case of HBCD, it is necessary to appropriately dispose of the recycled materials, heat insulation materials, TV plastics, and styrofoam in marine fishery among construction materials and restrict the use as recycled raw materials.

Analysis on Heat Transfer Coefficient of The Fluidized - Bed Combustion for Management of Sludge (슬러지 처리를 위한 유동층 연소로의 열전달률 해석)

  • Kim, Seong-Jung;Lee, Je-Hak
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.3
    • /
    • pp.27-33
    • /
    • 2012
  • According to the statistics of the Ministry of Environment, the emission of sewage sludge is increased by 7~9% yearly. In the future, it will be increased continuously because of extension of sewage disposal plants, high class treatment for removing nitrogen and phosphorus. Until now, we have depended on reclamation for lots of quantity and some part has been treated by ocean emission. But, direct reclamation of organic waste will be prohibited and even ocean emission will be prohibited now, so the treatment of sludge is put on emergency alert. Bio-gas can be produced by applying anaerobic digestion method for the recycling or refuse derived fuel can be conducted by applying carbonization method. However, the process is difficult, causes bad smell and makes it the second waste, so it cannot be practical method in fact. This study applied a fluidized bed combustor for sewage sludge treatment technologies that can actually take advantage of key technologies in order to verify its purpose is to demonstrate selected. If applying the fluidized bed combustor, it can be easily utilized as the replaced resource of energy(fuel) in the countries whose energy resources are insufficient, like our country. Especially, if applying only original strengths of the fluidized bed combustor sufficiently, the sewage sludge can be treated simply, eco-friendly, sanitarily and economically. Particularly, it is verified as the energy technology suitable for government's green growth policy.