• Title/Summary/Keyword: Waste Fats

Search Result 16, Processing Time 0.023 seconds

Characteristics of Fatty Acid Composition and Properties by Blending of Vegetable Oils (식물성 기름의 혼합을 통한 지방산 조성 및 이화학적 특성 변화)

  • Lee, Tae Sung;Lee, Yong Hwa;Kim, Kwang Soo;Kim, Wook;Kim, Kwan Su;Jang, Young Seok;Park, Kwang Geun
    • Korean Journal of Plant Resources
    • /
    • v.25 no.5
    • /
    • pp.624-632
    • /
    • 2012
  • As there have been lately many worldwide resource challenges such as potential exhaustion of fossil fuels, sudden rise of oil price and ever-rising grain pricing due to global food crisis, there have been more interests focused on recycling vegetable oils and fats into clean natural fuel and producing new resources based on waste cooking oil as a part of reusing waste resources. An Experiment was performed by using ratio of 50:50, 75:25 (w/w) mixture of based rapeseed oil, camellia oil, and olive oil. 50:50, 25:75 (w/w) mixture of based palm oil. The result was that the oleic acid ($C_{18:1}$) got the lowest percentage of 42.8%, when we combined the mixture of rapeseed oil and soybean oil. While the highest percentage of 72.1% was when the mixture of camellia oil and rapeseed oil were combined at 50:50 ratio. In 75:25 (w/w) case, mixture of rapeseed oil and soybean oil got the lowest. The highest ratio was the mixture of camellia oil and olive oil. Based on the component of palm oil, the total saturated fatty acid was decreased. It is expected that stabilizing oxidation through controlling of fatty acid after mixture and that liquidity at a low temperature. The acid value indicated that stabilizing oxidation got a range of highest to lowest. Camellia oil ranked as the highest, followed by olive oil, and the oil seeds as the lowest in rank. Controlling iodine value through mixture and improvement of stabilizing oxidation will provide a good quality. The quality of color has no significant change about mixture in ratio and maintenance. The reduction of the cost of refining process is expected by controling of mixture ratio at biodiesel production in the future.

Production of Biodiesel Using Immobilized Lipase from Proteus vulgaris (Proteus vulgaris에서 유래한 리파아제의 고정화 및 바이오디젤 생산)

  • Yoon, Shin-Ah;Han, Jin-Yee;Kim, Hyung-Kwoun
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.3
    • /
    • pp.238-244
    • /
    • 2011
  • Biodiesel, mono-alkyl esters of long chain fatty acids, is one of the alternative fuels derived from renewable lipid feedstock, such as vegetable oils or animal fats. For decade, various lipases have been used for the production of biodiesel. However, the production of biodiesel by enzymatic catalyst has profound restriction in industry application due to high cost. To overcome these problems, many research groups have studied extensively on the selection of cheap oil sources, the screening of suitable lipases, and development of lipase immobilization methods. In this study, we produced biodiesel from plant oil using Proteus vulgaris lipase K80 expressed in Escherichia coli cells. The recombinant lipase K80 was not only expressed in high level but also had high specific lipase activity and high stability in various organic solvents. Lipase K80 could produce biodiesel from olive oil by 3-stepwise methanol feeding method. The immobilized lipase K80 also produced biodiesel using the same 3-stepwise method. The immobilized lipase could produce biodiesel efficiently from various plant oils and waste oils.

Improvement of Low-temperature Fluidity of Biodiesel from Vegetable Oils and Animal Fats Using Urea for Reduction of Total Saturated FAME (요소 이용 포화도 저감을 통한 동.식물성 바이오디젤의 저온유동성 개선)

  • Lee, Yong-Hwa;Kim, Kwang-Soo;Jang, Young-Seok;Shin, Jung-Ah;Lee, Ki-Teak;Choi, In-Hu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.113-119
    • /
    • 2014
  • The compositions of saturated and unsaturated fatty acids in biodiesel feedstocks are important factors for biodiesel properties including low-temperature fluidity and oxidative stability. This study was conducted to improve low-temperature fluidity of biodiesel by reducing total saturated FAME (fatty acid methyl ester) in animal fat biodiesel fuels via urea-based fractionation and by mixing plant biodiesel fuels (rapeseed-FAME, waste cooking oil-FAME, soybean-FAME, and camellia-FAME) with enriched-polyunsaturated FAME derived from animal fat biodiesel. Our results showed that the reduction of total saturated FAME in animal fat biodiesel lowered CFPP (Cold Filter Plugging Point) to $-15^{\circ}C$. Mixing plant biodiesel fuels with the enriched-polyunsaturated FAME derived from animal fat biodiesel lowered CFPP of blended biodiesel fuels to $-10{\sim}-18^{\circ}C$.

Studies on the Development of Food Resources from Waste Seeds V. Chemical Composition of Water-melon Seed (폐기종실(廢棄種實)의 식량자원화(食糧資源化)에 관(關)하여 제(第)5보(報) : 수박씨의 화학적(化學的) 조성(組成))

  • Yoon, Hyung Sik;Kwon, Joong Ho;Hwang, Joo Ho;Bae, Man Jong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.12 no.3
    • /
    • pp.207-211
    • /
    • 1983
  • An attempt was made to find out the possibility of utilizing water-melon seed as resources of food fats and protein. The water-melon seed contained 40.40% of crude fat and 28.36% of crude protein. The lipid fraction obtained by silicic acid column chromatography was composed of about 97.35% neutral lipid, and the main components of neutral lipid by thin layer chromatography were triglyceride(50.40%), diglyceride(21.84%) and sterol(11.48%). The predominant fatty acids of total and major lipid classes were linoleic acid(55.30-67.85%), palmitic acid(12.07-28.12%) and oleic acid(9.06-16.40%), whereas stearic acid and linolenic acid were detected as small amounts. The salt soluble protein of watermelon seed was highly dispersible in 0.02M sodium phosphate buffer containing about 0.7M $MgSO_4$, and the extractability of seed protein was about 27%. Glutamic acid and arginine were major amino acids, and the essential amino acids such as lysine, threonine, valine, methionine, isoleucine, leucine and phenylalanine were also detected. The electrophoretic analysis showed 6 bands in water-melon seed protein, and the collection rate of the main protein fraction purified by sephadex G-100 and G-200 was 52.4%. The amino acids of the main fraction protein were also mainly composed of glutamic acid and arginine. The molecular weight for the main protein of the water-melon seed was estimated to be 120,000.

  • PDF

Studies on the Development of Food Resources from Waste Seeds IV. Chemical Composition of Red Pepper Seed (폐기종실(廢棄種實)의 식량자원화(食糧資源化)에 관(關)하여 제(第) 4 보(報) : 고추씨의 화학적(化學的) 조성(組成))

  • Yoon, Hyung Sik;Kwon, Joong Ho;Bae, Man Jong;Hwang, Joo Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.12 no.1
    • /
    • pp.46-50
    • /
    • 1983
  • In order to find out the possibility of utilizing red pepper seed as food resources of fats and proteins, a series of studies were conducted. The red pepper seed contained 27.6% of crude fat and 22.2% of crude protein. The lipid fractions obtained by silicic acid column chromatography were mainly composed of 95.4% neutral lipid, where as compound lipid were 4.6%. Among the neutral lipid separated by thin layer chromatography, triglyceride was 85.6%, sterol ester 4.9%, free fatty acids 3.4%, diglyceride 2.5%, sterol 2.2% and monoglyceride 1.1%, respectively. The predominant fatty acids of red pepper seed oil were linoleic acid (57.1-75.4%), palmitic acid (13.9-21.3%) and oleic acid (8.0-15.1%), especially glycolipid contained 1.7% of linolenic acid and small amount of myristic acid and arachidic acid. The salt soluble protein of red pepper seed was highly dispersible in 0.02M sodium phosphate buffer containing 1.0M $MgSO_4$, and the extractability of seed protein was about 25.0%. Glutamic acid and arginine were major amino acids of red pepper seed protein. The electrophoretic analysis showed 6 bands in seed protein, and the collection rate of the main protein fraction purified by sephadex G-100 and G-200 was about 62.2%. Glutamic acid (19.9%) was major amino acid of the main protein, followed by glycine and alanine. The molecular weight of the main protein was estimated to be 93,000.

  • PDF

Studies on the Development of Food Resources from Waste Seeds -I. Chemical Composition of Grape Seed- (폐엽종실(廢棄種實)의 식량자원화(貪糧資源化)에 관(關)하여 -제(第) 1 보(報) : 포도씨의 화학적(化學的) 조성(組成)-)

  • Yoon, Hyung-Sik;Kwon, Joong-Ho;Hwang, Joo-Ho;Choi, Jae-Chun;Shin, Dae-Hyn
    • Korean Journal of Food Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.250-256
    • /
    • 1982
  • A series of studies were conducted to find out the possibility of utilizing grape seed as resources of food fats and proteins, and the results of the studies are as follows: The grape seed contained 25.1%, of crude fat and 12.0% of crude protein. The lipid, fractions obtained by silicic acid column chromatography were mainly composed of about 95.5% neutral lipid, whereas compound lipid was only 4.5% level. Among the neutral lipid by thin layer chromatography, triglyceride was 91.89%, sterol ester, sterol, diglyceride and free fatty acid were 3.24%, 2.87%, 1.20% and 0.80%, respectively The predominant fatty acids of total and neutral lipids were linoleic acid $(69.72{\sim}71.72%)$ and oleic acid $18.09{\sim}19.46%)$, but those of glycolipid and phospolipid were linoleic acid $(31.49{\sim}38.18%)$, oleic acid $(20.20{\sim}35.27%)$ and palmitic acid $(26.80{\sim}39.98%)$. The major fatty acids of triglyceride separated from neutral lipid were oleic acid (43.08%), linoleic acid (38.42%) and palmitic acid (11.60%). The salt soluble protein of grape seed was highly dispersible in 0.02M sodium phosphate buffer containing about 1.0M $MgSO_4$, and the extractability of seed protein was 31%. Glutamic acid was the major amino acid in salt soluble protein, followed by arginine and aspartic acid. The electrophoretic analysis showed 3 bands in grape seed protein, and the collection rate of the main protein fraction purified by Sephadex G-100 and G-200 was 82%. Glutamic acid, aspartic acid and arginine were the major amino acids of the main grape seed protein. The molecular weight for the main protein of the grape seed was estimated to be 81,000.

  • PDF