• Title/Summary/Keyword: Waspaloy

Search Result 9, Processing Time 0.027 seconds

A Study on the Prediction of Grain Size Distribution in Hot Forging of Waspaloy Turbine Disc (Waspaloy 터빈디스크의 열간 단조시 결정립분포 해석에 관한 연구)

  • Yeom, Jong-Taek;Lee, Chong-Soo;Kim, Jeoung-Han;Lee, Dong-Geun;Park, Nho-Kwang
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.2 s.25
    • /
    • pp.70-76
    • /
    • 2006
  • The microstructure evolution during a hot forging of Waspaloy was investigated using the recrystallization model and FEM simulation. In order to obtain an uniform microstructure, hot forging was carried out by two step. The change of grain size during hot forging has a deep connection with dynamic recrystallization behavior. Avrami-type constitutive equation for the dynamic recrystallization was implemented into an user subroutine of 2D FE simulator. The evolution of grain structure in the two-step forging of Waspaloy was simulated using the 2D FEM user-subroutine. The detailed variation of microstructures due to dynamic recrystallization could effectively be predicted at various locations in a forged pancake.

Computer Simulation of Recrystallization and Grain Growth during Hot Forging Process of Waspaloy (Waspaloy의 열간 단조 공정중 재결정 거동과 결정립 성장에 대한 유한요소해석)

  • Kang, G.P.;Lee, K.H.;Lee, S.U.
    • Transactions of Materials Processing
    • /
    • v.17 no.2
    • /
    • pp.113-116
    • /
    • 2008
  • Computer simulation of microstructure evolution during hot forging process is of great interest in recent years. Recrystallization model and grain growth model which use a phenomenological approach were summarized. The upsetting and cogging processes of waspaloy were simulated using $DEFORM^{TM}$ and the change in grain size were investigated in each deformation procedure.

The Hot Forging of Small Size Gas Turbine Disks (소형가스터빈 디스크의 얼간단조)

  • Cha, D.J.;Song, Y.S.;Kim, D.K.;Kim, Y.D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.370-373
    • /
    • 2008
  • Small size gas turbine disk requires good mechanical strength and creep properties at high temperature. In this study, Waspaloy was used as a superalloy to satisfy these specifications. The control of microstructure was needed to satisfy material properties at high temperature. In order to do this, we studied forging conditions and material analysis. Therefore die and preform design conducted so that hot forged gas turbine disk could have a good microstructure. The die and preform shapes are designed with consideration of the predefined hydraulic press capacity and the microstructure of forging product. Also we carried out the hot compression test for Waspaloy in various test conditions. From these results, we obtained the forging conditions as material temperature, die velocity etc. To verify these forging conditions, we conducted FE simulations by means of the DEFORM 2D-HT. In this study, the hot closed die and preform designs were completed to offer high temperature material properties of a small size gas turbine.

  • PDF

Computer Simulation of Microstructure Evolution during Hot Forging of Waspaloy (미세조직 변화를 고려한 열간 단조 공정에서의 유한요소해석)

  • Kang, G.P.;Lee, K.H.;Lee, S.U.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.53-56
    • /
    • 2007
  • Computer simulation of microstructure evolution during hot forging process is of great interest in recent years. Recrystallization model and grain growth model which use a phenomenological approach were summarized. For the waspaloy, upsetting process and cogging process were simulated using $DEFORM^{TM}$ and the change in grain size were investigated in each deformation procedure.

  • PDF

Process Design and Microstructure Evaluation During Hot Forging of Superalloy Turbine Disk (초내열합금 터빈 디스크의 열간 단조 공정에 대한 공정 설계 및 미세조직 평가)

  • Cha, D.J.;Kim, D.K.;Kim, Y.D.;Bae, W.B.;Cho, J.R.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.190-194
    • /
    • 2007
  • The forging process design and microstructure evolution for gas turbine disk of a Waspaloy is investigated in this study. Parameters related to deformation are die and preform geometry, and forging temperature of die and workpiece. Die and preform design are considered to reduce the forging load, and to avoid the forging defects. Blocker and finisher dies for multistage forging are designed and the initial billet geometry is determined. The control of hot forging parameters such as strain, strain rate and temperature also is important because the microstructure change in hot working affects the mechanical properties. The dynamic recrystallization evolution has been studied in the temperature range 900-$1200^{\circ}C$ and strain rate range 0.01-1.0s-1 using hot compression tests. Modeling equations are required represent the flow curve, recrystallized grain size, recrystallized volume fraction by various tests. In this study, we used to thermo-viscoplastic finite element modeling equation of DEFORM-2D to predict the microstructure change evolution during thermo-mechanical processing. The microstructure is updated during the entire thermal and deformation processes in forging.

  • PDF

터빈디스크합금 Waspaloy의 점소성변형거동 해석

  • 박노광;염종택;김인수
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.35-35
    • /
    • 2000
  • 터빈의 핵심구동부품은 손상이 누적되어 파괴에 이를 경우 치명적인 결과를 야기할 수 있기 때문에, 부품사용조건에서의 소성변형과 이에 따른 손상 누적을 정확히 예측하고 평가함으로써 균열생성 시점을 정확히 파악하여야 할 필요가 있다. 현재 터빈디스크와 같이 고온 고응력에서 사용되고 있는 소재부품의 수명은 궁극적으로 크리프변형과 피로시험의 공동작용으로 결정되며, 재료특성모델링 시험에 있어서도 dwell time 피로시험을 통해 dwell time 효과를 점검하고 점소성 재료변형에 근거하여 피로에 의한 변형 현상을 설명할 수 있다.

  • PDF

Determination of ECM parameter Base on surface Roughness for Ni base Heat Resistant Alloy (Ni기 내열합금의 표면조도에 의한 전해가공조건의 설정)

  • 이상준;정윤교
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.256-262
    • /
    • 1999
  • By development of heat resistant alloy, there are much improvement of gas turbine engines. But heat resistant alloy has difficulty of machining. therefore, ECM (Electrochemical Machining) is used for Machining of 3 dimensional curved surface of Ni-base alloy. The purpose of this paper is to investigate ECM parameters that make tile good surface for Ni-base alloy blade. For this purpose, we have been investigated that center line average surface roughness(R$\sub$a/), average R$\sub$a/, Maximum R$\sub$a/ and Standard deviation of R$\sub$a/ for measuring positions is influenced on ECM parameters such as electrolyte types, dwell time, electrolyte pressure and sort of electrolyte for Inconel 718 and Waspaloy.

  • PDF

Life Evaluation of Gas Turbine Engine Disk based on Retirement for Cause Concept (Retirement For Cause 개념에 의한 가스터빈 디스크 수명의 평가)

  • Nam, Seung-Hun;Park, Jong-Hwa;Kim, Jong-Yeop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.2
    • /
    • pp.365-373
    • /
    • 2002
  • For gas turbine engines, the safe life methodology has historically been used fur fatigue life management of failure critical engine components. The safe retirement limit is necessarily determined by a conservative life evaluation procedure, thereby many components which have a long residual life are discarded. The objective of this study is to introduce the damage tolerant design concept into the life management for aircraft engine component instead of conservative fatigue life methodology which has been used for both design and maintenance. Crack growth data were collected on a nickel base superalloy which have been subjected to combined static and cyclic loading at elevated temperatures. Stress analysis fur turbine disk was carried out. The program for computing creep-fatigue crack growth was developed. The residual lifes of turbine disk component under various temperatures and conditions using creep-fatigue crack growth data were estimated. As the result of analysis, it was confirmed that retirement fur cause concept was applicable to the evaluation of residual life of retired turbine disk which had been designed based on the conventional fatigue life methodology.