• Title/Summary/Keyword: Washburn equation

Search Result 12, Processing Time 0.016 seconds

Multianalyte Sensor Array using Capillary-Based Sample Introduction Fluidic Structure: Toward the Development of an "Electronic Tongue"

  • Sohn, Young-Soo;Anslyn, Eric V.;McDevitt, John T.;Shera, Jason B.;Neikirk, Dean P.
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.378-382
    • /
    • 2004
  • A micromachined fluidic structure for the introduction of liquid samples into a chip-based sensor array composed of individually addressable polymeric microbeads has been developed. The structure consists of a separately attached cover glass, a single silicon chip having micromachined channels and microbead storage cavities, and a glass carver. In our sensor array, transduction occurs via colorimetric and fluorescence changes to receptors and indicator molecules that are covalently attached to termination sites on the polymeric microbeads. Data streams are acquired for each of the individual microbeads using a CCD. One of the key parts of the structure is a passive fluid introduction system driven only by capillary force. The velocity of penetration of a horizontal capillary for the device having a rectangular cross section has been derived, and it is quite similar to the Washburn Equation calculated for a pipe with a circular cross section having uniform radius. The test results show that this system is useful in a ${\mu}$-TAS and biomedical applications.

Glass-alumina Composites Prepared by Melt-infiltration: II. Kinetic Studies (용융침투법으로 제조한 유리-알루미나 복합체: II. Kinetic 연구)

  • Lee, Deuk-Yong;Jang, Joo-Wung;Lee, Myung-Hyun;Lee, Jun-Kwang;Kim, Dae-Joon;Park, Il-Seok
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.2
    • /
    • pp.145-152
    • /
    • 2002
  • Four commercial alumina powders having different particle size of $0.5{\mu}m,\;2.8{\mu}m,\;12{\mu}m,\;and\;45{\mu}m$ were presintered at 1120$^{\circ}C$ for 2h and then lanthanum aluminosilicate glass was infiltrated at 1100$^{\circ}C$ for 2h in the interval of 0.1h to investigate the penetration kinetic of the glass into the alumina preforms. The infiltration distance is parabolic with respect to time as described by the Washburn equation and the penetration rate constant, K, increases with raising the alumina particle size. The strength of glass-alumina composites increases as the alumina particle size reaches to 2.8${\mu}m$ due to the increase in packing, however, decreases with further increasing the alumina particle size. The fracture toughness of the composites rises with increasing the alumina particle size due to the crack bowing and the interaction between crack and alumina particles.