• Title/Summary/Keyword: Warm ocean current

Search Result 219, Processing Time 0.029 seconds

The Effect of the Oceanic Condition on Variations of the Catches of Alaska Pollack in the East Sea (the Japan Sea)

  • HONG Chul-hoon;CHO Kyu-Dae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.6
    • /
    • pp.997-1004
    • /
    • 1997
  • The effect of the oceanic condition on variations of the catches of Alaska pollack (Theragra chalcogramma) in the East Sea (the Japan Sea) is examined using monthly catches data of this fish and temperature data during 1972 to 1991. Since 1973 the catches of Alaska pollack have gradually increased, showing a peak in 1981, and then rapidly decreased after 1986. A significant negative correlation was found between variations of the catches and the temperature at 50 m depth offshore Mukho. In 1981, the year of the highest catches in the study period, the water mass in the Eastern Korean Coastal Sea of the East Sea was extremely cold, while the year of poor catch, 1979, was much warmer than the annual mean temperature. The results show that the temperature variations around the Eastern Korean Coastal Sea play an important role in the variations of the catches of Alaska pollack, implying that the effect of the Tsushima Warm Current is also very important.

  • PDF

First record of Lucicutia gaussae (Calanoida, Lucicutiidae) from Korean waters

  • Seok Ju Lee;Min Ho Seo;Ho Young Soh
    • Journal of Species Research
    • /
    • v.13 no.2
    • /
    • pp.178-184
    • /
    • 2024
  • Two species (Lucicutia clausi, L. flavicornis) of Lucicutia (Lucicutiidae Sars, 1902) have been reported in Korean waters and one species(L. gaussae) is newly added the Tsushima Warm Current realm. Specimens from Korean waters are morphologically consistent with previous morphological characteristics of L. gaussae, but these differ in the following characteristics: 1) the male antennule with one process on segments XIX-XX, one process on segment XVIII, and three processes on segments XXI-XXIII; 2) in male leg 5, basis of left leg in the Korean specimen with small spine processes on the protrusion; 3) in male leg 5, the third exopodal segment of left leg without an inner marginal spine. In this study, we provide a redescription of L. gaussae insufficiently described by previous authors.

Water Mass Stability of Deep Ocean Water in the East Sea (동해 심층수의 수괴 안정성)

  • Moon D.S.;Jung D.H.;Shin P.K.;Kim H.J.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.285-289
    • /
    • 2004
  • Oceanographic observation and qualitative analysis for deep ocean water in the East Sea were carried out from January 2003 to January 2004, in order to understand the characteristics of deep sea water in the East Sea. Temporal and spatial variation of water masses were discussed from survey of the study area including the coastal sea of Kwangwon province in where the polar front mixing cold and warm water masses were formed. On the basis of the vertical profiles of temperature, salinity and dissolved oxygen, water masses in the study area were divided into 5 major groups; (1) Low Saline Surface Water (LSSW) (2) Tsushima Surface water (TSW) (3) Tsushima Middle Water (TMW) (4) North Korea Cold Water (NKCW) and (5) East Sea Proper Water (ESPW). In winter, surface water in coastal sea of Kwangwaan Kosung region were dominated by North Korean Cold Water (NKCW). As Tsushima warm current were enforced in summer, various water masses were vertically emerged in study area, in order of TSW, TMW, NKCW and ESPW. It is highly possible that the LSSW which occurred at surface water of september is originated from influx of fresh water due to the seasonal rainy spell. Nevertheless water masses existed within surface water were seasonally varied, water quality characteristics of East Sea Proper Water (ESPW) under 300 m did not changed all the seasons of the year.

  • PDF

Surface Current Fields in the Eastern East China Sea

  • Lie, Heung-Jae;Cho, Cheol-Ho
    • Journal of the korean society of oceanography
    • /
    • v.32 no.1
    • /
    • pp.1-7
    • /
    • 1997
  • Surface current fields in the eastern East China Sea (ECS) were constructed by analyzing trajectories of 58 satellite-tracked surface drifters released during 1991-1996. Composite trajectories and 20-minute-by-20-minute box-averaged current vectors show that the basic current pattern composes of: the Kuroshio main stream, which turns eastward toward the Tokara Strait; a northward branch current of the Kuroshio on the ECS outer shelf deeper than 100 m; and an anticyclonic circulation in the northern Okinawa Trough west of Kyushu. The northward branch current sharply changes its direction to the northeast when it crosses a line connecting Cheju Island, Korea and Goto Islands, Japan. The basic pattern of current field changes slightly from winter to summer, and the main axis of the Tsushima Current in the Korea Strait is found to shift seasonally. The drifter experiment does not support the claim that the Yellow Sea Warm Current is separated from the northward branch current on the outer shelf southeast of Cheju Island. We suggest that the use of the term 'Tsushima Current' be limited to the northeast channel flow in the Korea Strait. The new term 'Kuroshio Branch Current' is suggested for the northward branch current on the outer shelf south of Cheju-do, which is separated from the Kuroshio.

  • PDF

Seasonal Variation of Phytoplankton Assemblages Related to Surface Water Mass in the Eastern Part of the South Sea in Korea (남해동부해역의 표층 수괴 변화에 따른 환경요인과 식물플랑크톤 군집의 계절적 변화)

  • Jang, Pung-Guk;Hyun, Bonggil;Cha, Hyung-Gon;Chung, Han-Sik;Jang, Min-Chul;Shin, Kyoungsoon
    • Ocean and Polar Research
    • /
    • v.35 no.2
    • /
    • pp.157-170
    • /
    • 2013
  • We investigated the seasonal succession of phytoplankton assemblages in the eastern part of the South Sea of Korea in relation to surface water masses. The study areas are under the direct influence of the Tsushima Warm Current (TCW) throughout the whole year, with its strength known to be seasonally variable. The region is also influenced by coastal waters (CW) driven from the South Sea of Korea and East China Sea, particularly in summer, as indicated by low salinity in the surface water. Nutrient property of the TCW can reveals whether the origin of the TCW is the nutrient-rich Kuroshio Current or the oligotropic Taiwan Warm Current. Surface chlorophyll-a (Chl-a) concentrations displayed a large seasonal variation for all stations, with high values found in spring and autumn and low values in summer and winter. At station M (offshore) and P (intermediate location between M and R), Chl-a concentrations in October were higher than those in March, when spring bloom normally occurs. This may be related to deeper mixed layer depths in October. Diatoms dominated under conditions of high nutrient supply in which Chaetoceros spp. and Skeletonema costatum-like spp. were abundant. S. costatum-like spp. dominated at stations R (onshore station) and P in December when there was greater nutrient supply, especially of phosphate. Flagellates and dinoflagellates dominated at all three stations after diatoms blooms. Dominant species were Scrippsiella trochoid in April and Ceratium furca in October at station R, and Gyrodinium spp. and Gymnodinium spp. at station M during summer, when the effect of the oligotropic Taiwan Warm Current and the oligotropic coastal water from East China Sea were strong. Redundancy analysis showed clear seasonal successions in the phytoplankton community and environmental conditions, in which both principal components 1 and 2 accounted for 69.6% of total variance. Our results suggested that environmental conditions seemed to be determined by the origin of the TCW and the relative seasonal strength of the water masses of the TCW and CW, which may affect phytoplankton growth and compositions in the study area.

Development of Simulation Model for Diffusion of Oil Spill in the Ocean 1 -Three Dimensional Characteristics of the Circulation in the Nearly Closed Bay- (해양유출기름의 확산 시뮬레이션 모델 개발I- 폐쇄만에서의 3차원 흐름특성분석 -)

  • Lee, J.W.;Kim, K.C.;Kang, S.Y.;Doh, D.H.
    • Journal of Korean Port Research
    • /
    • v.11 no.2
    • /
    • pp.241-255
    • /
    • 1997
  • Three dimensional numerical model is used to simulate the circulation patterns in the Gamcheon Bay located in Pusan, Korea and compared with the observed data. The model is forced by winds, tidal elevation at open boundaries, and warm water discharged from the outfall of power plant, Turbulence mixing coefficients are calculated according to a ${\kippa}-{\varepsilon}$ turbulence closure submodel. Temperature, salinty and current are measuted extensively and these measuted data are compared with the simulation results. Eddy-like features exist both in observed data dna simulation results. These eddies are the results of interaction with the weak tidal current, wind driven current and warm water discharges. Compensational deeects are also found to exit such that while surface current is strong, bottom current tends to weaken and vice versa.

  • PDF

On the Warm Eddies in the Southwestern Part of the East Sea (the Japan Sea) (동해 남서해역에서의 난수성 소용돌이에 대하여)

  • AN, HUISOO;SHIM, KYUNGSIN;SHIN, HONG-RYEOL
    • 한국해양학회지
    • /
    • v.29 no.2
    • /
    • pp.152-163
    • /
    • 1994
  • The characteristics and fluctuations of structures and spatial distributions of warm eddies (anticyclonic eddies) in the southwestern part of the East Sea (the Japan Sea) are discussed based on the data gathered y the Fisheries Research and Development Agency, Korea from 1967 to 1968. The warm eddies existed very often in the southwest of the Ullung Island. The warm eddies are elliptical in shape and the mean size is about 130 km in diameter. Bimonthly distributions of warm eddies, the largest value of observed frequency and diameter in August and the least in June, indicate that the generation of the warm eddy is related with the development of the East Korean Warm Current. The warm eddies move west, north or southward with 0.80∼2.50 cm/sec or stay over a few months at the same place southwest of the Ullung Island. Movement of warm eddies may be influenced by the neighboring currents, the Rossby wave and the topography. The relationship between the position of warm eddies and the bottom topography suggests that the development and the movement of warm eddies are controlled by the Ullung Basin. The warm eddies should be divided into two groups. One group is the shallow warm eddy with strong baroclinic characteristics and the other is the deep one with strong Barotropic characteristics. The shallow group seems to be closely related with positive values (in summer) of the sea level difference between Pusan and Mozi (the Tsushima Current), while the deep group has no relation with that.

  • PDF

Typhoon Researches Using the Ieodo Ocean Research Station: Part I. Importance and Present Status of Typhoon Observation (이어도 종합해양과학기지를 활용한 태풍연구: Part I. 태풍관측의 중요성 및 현황)

  • Moon, Il-Ju;Shim, Jae-Seol;Lee, Dong Young;Lee, Jae Hak;Min, In-Ki;Lim, Kwan Chang
    • Atmosphere
    • /
    • v.20 no.3
    • /
    • pp.247-260
    • /
    • 2010
  • A recent dramatic increase of natural hazards in the Korean peninsular (KP) due to typhoons have raised necessities for the accurate typhoon prediction. Ieodo ocean research station (IORS) has been constructed in June 2003 at the open ocean where typhoons pass frequently, aiming to observe typhoons before the landfall to the KP and hence to improve the prediction skill. This paper investigates the importance of measurements at the IORS in the typhoon research and forecast. Analysis of the best track data in the N. W. Pacific shows that about one typhoon passes over the IORS per year on the average and 54% of the KP-landfall typhoons during 59 years (1950-2008) passed by the IORS within the range of the 150-km radius. The data observed during the event of typhoons reveals that the IORS can provide useful information for the typhoon prediction prior to the landfall (mainland: before 8-10 hrs, Jeju Island: before 4-6 hrs), which may contribute to improving the typhoon prediction skill and conducting the disaster prevention during the landfall. Since 2003, nine typhoons have influenced the IORS by strong winds above 17m/s. Among them, the typhoon Maemi (0314) was the strongest and brought the largest damages in Korea. The various oceanic and atmospheric observation data at the IORS suggest that the Maemi (0314) has kept the strong intensity until the landfall as passing over warm ocean currents, while the Ewiniar (0603) has weakened rapidly as passing over the Yellow Sea Bottom Cold Water (YSBCW), mainly due to the storm's self-induced surface cooling. It is revealed that the IORS is located in the best place for monitering the patterns of the warm currents and the YSBCW which varies in time and space.

Satellite-altimeter-derived East Sea Surface Currents: Estimation, Description and Variability Pattern (인공위성 고도계 자료로 추정한 동해 표층해류와 공간분포 변동성)

  • Choi, Byoung-Ju;Byun, Do-Seong;Lee, Kang-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.17 no.4
    • /
    • pp.225-242
    • /
    • 2012
  • This is the first attempt to produce simultaneous surface current field from satellite altimeter data for the entire East Sea and to provide surface current information to users with formal description. It is possible to estimate surface geostrophic current field in near real-time because satellite altimeters and coastal tide gauges supply sea level data for the whole East Sea. Strength and location of the major currents and meso-scale eddies can be identified from the estimated surface geostrophic current field. The mean locations of major surface currents were explicated relative to topographic, ocean-surface and undersea features with schematic representation of surface circulation. In order to demonstrate the practical use of this surface current information, exemplary descriptions of annual, seasonal and monthly mean surface geostrophic current distributions were presented. In order to objectively classify surface circulation patterns in the East Sea, empirical orthogonal function (EOF) analysis was performed on the estimated 16-year (1993-2008) surface current data. The first mode was associated with intensification or weakening of the East Korea Warm Current (EKWC) flowing northward along the east coast of Korea and of the anti-cyclonic circulation southwest of Yamato Basin. The second mode was associated with meandering paths of the EKWC in the southern East Sea with wavelength of 300 km. The first and second modes had inter-annual variations. The East Sea surface circulation was classified as inertial boundary current pattern, Tsushima Warm Current pattern, meandering pattern, and Offshore Branch pattern by the time coefficient of the first two EOF modes.

Water Masses and Salinity in the Eastern Yellow Sea from Winter to Spring

  • Park, Moon-Jin;Oh, Hee-Jin
    • Ocean and Polar Research
    • /
    • v.26 no.1
    • /
    • pp.65-75
    • /
    • 2004
  • In order to understand the water masses and their distribution in the eastern Yellow Sea from winter to spring, a cluster analysis was applied to the temperature and salinity data of Korea Oceanographic Data Center from 1970 to 1990. From December to April, Yellow Sea Cold Water (YSCW) dominates the eastern Yellow Sea, whereas Eastern Yellow Sea Mixed Water (MW) and Yellow Sea Warm Water (YSWW) are found in the southern part of the eastern Yellow Sea. MW appears at the frontal region around $34^{\circ}N$ between YSCW in the north and YSWW in the south. On the other hand, Tshushima Warm Water (TWW) is found around Jeju Island and the South Sea of Korea. These water masses are relatively well-mixed throughout the water column due to the winter monsoon. However, the water column begins to be stratified in spring due to increased solar heating, the diminishing winds and fresh water discharge, and the water masses in June may be separated into surface, intermediate and bottom layers of the water column. YSWW advances northwestward from December to February and retreats southeastward from February to April. This suggests a periodic movement of water masses in the southern part of the eastern Yellow Sea from winter to spring. YSWW may continue to move eastward with the prevailing eastward current to the South Sea from April to June. Also, the front relaxes in June, but the mixed water advances to the north, increasing salinity. The salinity is also higher in the nearshore region than offshore. This indicates an influx of oceanic water to the north in the nearshore region of the eastern Yellow Sea in spring in the form of mixed water.