• 제목/요약/키워드: Warm deep drawing

검색결과 68건 처리시간 0.021초

AZ3l 마그네슘합금의 온간디프드로잉시 판재성형성 향상 (Improvement of Formability of AZ31 Magnesium Alloy Sheet during Warm Deep Drawing)

  • 이명섭;강대민
    • 소성∙가공
    • /
    • 제15권2호
    • /
    • pp.148-152
    • /
    • 2006
  • In this study, the experiments of warm deep drawing were done with heated die, and with heated die, and blankholder, and cooled punch in order to investigate the formability of AZ31 magnesium alloy sheet in warm deep drawing. For this, warm deep drawing experiments were executed under various temperatures and punch velocities. The results of warm deep drawing with heated die showed that fracture occurred around the punch part at punch velocity of 75mm/min and punch stroke of 10mm under temperature range of 373-523K, but did not occur under temperature range of 548-673K even punch stroke of 25mm. And fracture at the punch stroke of 25mm and the temperature of 523K did not occur under the punch velocity of 30mm/min, but occurred under punch velocity of 75 and 125mm/min. Also warm deep drawing with heated die and blankholder, and cooled punch showed that the temperature range happening maximum height under punch velocity of 10-100mm/min was around 498-523K. Finally, with heating and cooling technique necking of AZ31 magnesium alloy occurred at punch shoulder part under the temperature range of 293-423K, but at die wall part under the temperature range of 473-573K.

AZ31 마그네슘합금의 온간디프드로잉시 판재성형특성 (Formability of AZ31 magnesium sheet alloy of warm deep drawing)

  • 이명섭;강대민
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.377-380
    • /
    • 2005
  • In this study, the experiments of warm deep drawing were done with heated die, and with heated die and cooled punch in order to investigate the formability of ZA31 magnesium sheet alloy of warm deep drawing. For this, warm deep drawing experiments were executed under various temperature, punch velocity and blankholder force. The results of warm deep drawing with heated die showed that fracture occurred punch part at punch velocity of 75mm/min and punch stroke of 10mm under temperature of $100^{\circ}C\~250^{\circ}C$, but did not occure under temperature of $275^{\circ}C\~400^{\circ}C$. And fracture at punch stroke of 25mm did not occurre at punch part under punch velocity of 30mm/min and $250^{\circ}C$, but occured under punch velocity of 75 and 125 mm/min. Also the results of warm deep drawing with heated die and cooled punch showed that the temperature happening maximum height under punch velocity of 10-100mm/min was $225-250^{\circ}C$. And necking occurred at punch shoulder under $20\~150^{\circ}C$, but at die wall under $200\~300^{\circ}C$.

  • PDF

알루미늄 합금박판 비등온 성형공정의 유한요소해석 및 실험적 연구 (제1부. 실험) (Finite Element Analysis and Experimental Investigation of Non-isothermal Foming Processes for Aluminum-Alloy Sheet Metals(Part 1. Experiment))

  • 류호연;김영은;김종호;구본영;금영탁
    • 소성∙가공
    • /
    • 제8권2호
    • /
    • pp.152-159
    • /
    • 1999
  • This study is to investigate the effects of warm deep drawing with aluminum sheets of A1050-H16 and A5020-H32 for improving deep drawability. Experiments for producing circular cups and square cups were carried out for various working conditions, such as forming temperature and blank shapes. The limit drawing ratio(LDR) of 2.63 in warm deep drawing of circular cups in case of A5020-H32 sheet, whereas LDR of 2.25 in case of A1050-H16, could be obtained and the former was 1.4 times higher than the value at room temperature. The maximum relative drawing depth for square cups of A5020-H32 material was also about 1.92 times deeper than the depth drawn at room temperature. The effects of blank shape and forming temperature on drawability as well as thickness distribution of drawn cups were examined and discussed.

  • PDF

크랭크 프레스와 유압 프레스에서 스테인리스 강판의 온간 드로잉성 비교 (Comparison of Warm Deep Drawability of Stainless Steel Sheet Between Crank Press and Hydraulic Press)

  • 김종호;최치수;나경환
    • 소성∙가공
    • /
    • 제4권4호
    • /
    • pp.345-352
    • /
    • 1995
  • Warm deep drawing for optimum forming conditions to give the maximum drawing depth is investigated and compared with the results from experiments performed at room temperature. Experiments which draw square cups of STS 304 stainless steel sheet under the constant lubrication condition of teflon film are made both in a crank and hydraulic press for two kinds of specimens. The maximum drawing depth at warm forming condition reaches 1.4 times the drawing depth at room temperature in a crank press, whereas 1.6 times in a hydraulic press, and also more uniform distribution of thickness in case of warm deep drawn cup is observed. The effects of other factors on formability, such as forming temperature, speed of press and cooling of punch are examined and discussed.

  • PDF

가열냉각방법에 의한 마그네슘합금의 판재성형성 개선 (Improvement on the Formability of Magnesium Alloy Sheet by Heating and Cooling Method)

  • 강대민
    • 소성∙가공
    • /
    • 제14권7호
    • /
    • pp.607-612
    • /
    • 2005
  • In this paper, warm deep drawing process with local heating and cooling technique was attempted to improve the formability of AZ31 magnesium alloy which is impossibly to form by conventional methods at room temperature by finite element method and experiment. For FE analysis, in first model with considering heat transfer, both die and blankholder were heated to 573K while the punch was kept at room temperature by cooling water. Also distribution of thickness and von Mises stress at room temperature and 498k for warm deep drawing were compared by FEM. Uniaxial tension tests at elevated temperature were done in order to obtain the temperature dependence of material constant under temperature of $293K\~573K$ and cross head velocity of $5\~500mm/min$. The phenomenological model for warm deep drawing process in this work was based on the hardening law and power law strain rate dependency. Deep drawing experiment were conducted at temperatures of room temperature, 373K, 423K, 473K, 498K, 523K, and 573K for the blank and deep drawing tools(holder and die) and at a punch speed of 10mm/min.

가공유기변태 강판의 온간 디프드로잉 성형 특성 (Characteristics on the Warm Deep Drawability of Transformation-Induced Plasticity Steel Sheet)

  • 공경환;최치수;최이천;서대교
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2000년도 추계학술대회 논문집
    • /
    • pp.162-167
    • /
    • 2000
  • The warm deep drawability in square cup drawing is investigated about a newly developed high-strength steel sheet with retained austenite which is transformed into martensite during forming. For this investigation, six steps of temperature ranges, from room temperature to $250^{\circ}C$, and five kinds of drawing ratio, from 2.2 to 2.6 were adopted. As a result the maximum drawing force and the maximum drawing depth were affected by the elevated temperatures, and the more stable thickness strain distribution was observed to the elevated temperatures. But blue shortness happened over $200^{\circ}C$. The FEM analysis using the LS-DYNA code is adopted to compare the experimental results with the analytical results for thickness strain distribution.

  • PDF

Characteristics of the Warm Deep Drawability of a Transformation-Induced Plasticity Steel Sheet

  • 서대교;장성호;공경환
    • 소성∙가공
    • /
    • 제8권3호
    • /
    • pp.221-221
    • /
    • 1999
  • Warm deep drawability in a square cup drawing was investigated using a newly developed high-strength steel sheet with retained austenite that was transformed into martensite during formation. For this investigation, six different temperatures between room temperature and 250℃, and five different drawing ratios ranging from 2.2 to 2.6 were considered. The results showed that the maximum drawing force and the drawing depth were affected by the change in temperature, and a more stable thickness strain distribution was observed at elevated temperatures. However, blue shortness occurred at over 200℃. FEM analysis using the LS-DYNA code was used to compare the experimental results with the numerical results for the thickness strain distribution.

고온상태에서 마그네슘 합금의 디프드로잉 성형성에 관한 연구 (A Study on the Formability of Magnesium Alloy in Warm Temperature)

  • 강대민;황종관
    • 한국기계가공학회지
    • /
    • 제2권2호
    • /
    • pp.84-90
    • /
    • 2003
  • Magnesium alloys have been paid attention In automotive and industries as lightweight materials, and with these materials it has been attempted at deep drawing process for assessment of formability of sheet metal. For warm deep drawing process with a local heating and cooling technique, both die and blank holder were heated at warm temperature while the punch was kept at room temperature by cooling water. Warm deep-drawing process with considering heat transfer was simulated by finite element method to investigate the improvement of deep-drawability and temperature distribution of Mg alloy sheet. The effect of sham rate sensitivity index on the deformation profile was considered in this work and the simulation results revealed that considering heat transfer is very effective for deep-drawability of Mg alloy. The deformed blank In considering heat transfer was drawn successfully without any localized thinning and the cup height is higher in contrast to results of simulations in considering no heat transfer.

  • PDF

크랭크 프레스와 유압 프레스에서 스테인리스 강판의 온간 드로잉성 비교 (Comparison of Warm Deep Drawability of Stainless Sheet Between Crank Press and Hydraulic Press)

  • 김종호;최치수;나경환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1995년도 춘계학술대회논문집
    • /
    • pp.178-185
    • /
    • 1995
  • Warm deep drawing for optimum forming conditions to give the maximum drawing depth is investigated and compared with the results at room temperature. Experiments which draw square cups of STS 304 stainless steel sheet under the constant lubrication condition of teflon film made both in a crank and hydrqulic press for two kinds of specimens . The maximum drawing depth at warm forming condition reaches 1.4 times the drawing depth at room temperature in a crank press, whereas 1.6 times in a hydrqulic press, and also more uniform distribution of thickness in case of warm deep drawn cup is observed. The effects of other factors on formability , such as forming temperature, speed of press and cooling of punch are examinnied and discussed.

  • PDF

알루미늄 합금박판 비등온 성형공정의 유한요소해석 및 실험적 연구(제1부. 실험) (Finite Element Analysis and Experimental Investigation of Non-isothermal Forming Processes for Aluminum-Alloy Sheet Metals. (Part 1. Experiment))

  • 류호연;배원택;김종호;김성민;구본영;금영탁
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1998년도 춘계학술대회논문집
    • /
    • pp.45-52
    • /
    • 1998
  • This study is to investigate the effects of warm deep drawing with aluminum sheets of A1050-H16 and A5052-H32 for improving deep drawability. Experiments for procucing circular cups and square cups were carried out for various working conditions, such as forming temperature and blank shape. The limit drawing ratio(LDR) of 2.63 in warm deep drawing of circular cups in case of A5052-H32 sheet, whereas LDR of A1050-H16 is 2.25, could be obtained and the former was 8 times higher than the value at room temperature. The maximum relative drawing depth for square cups of A5052-H32 material was also about 2 times deeper than the depth drawn at room temperature. The effects of blank shape, and temperature on drawability of aluminum materials as well as thickness distribution of drawn cups were examined and discussed.

  • PDF