• Title/Summary/Keyword: Warm deep drawability

Search Result 25, Processing Time 0.028 seconds

Analysis of Formability of Magnesium Alloy using Finite Element Method (유한요소법에 의한 마그네슘 합금판의 성형성 해석)

  • Kang, Dae-Min;Park, Kyeong-Dong;Hwang, Jong-Kwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.2
    • /
    • pp.60-66
    • /
    • 2004
  • Finite element method is very effective method to simulate the forming processes with good prediction of the deformation behaviour. In this paper, It was focussed on the drawability factors on the square cup deep drawing by PAM-STAMP with using magnesium alloy to reduce car weight as well as to draw much attention from the viewpoint of environmental preservation high rigidity, In order to predict the effect of drawability factors, the relationships between punch load and punch stroke, the relationships between thickness strain and distance, and are used. According to this study, the results of simulation will give engineers good information to access the drawability of square cup deep drawing at warm temperature.

  • PDF

A Study on the Deep Drawing of AZ31B Magnesium Sheet at Warm and Hot Temperature (AZ31B 마그네슘 판재의 온.열간 ?K드로잉에 관한 연구)

  • Kim, H.G.;Bae, J.W.;Choo, D.K.;Kang, C.G.
    • Transactions of Materials Processing
    • /
    • v.15 no.7 s.88
    • /
    • pp.504-511
    • /
    • 2006
  • The drawability of AZ31B magnesium sheet is estimated at various temperatures($200,\;250,\;300,\;350\;and\;400^{\circ}C$), and forming speed(20, 50, 100mm/min), thickness(0.5, 0.8, 1.0, 1.4mm). The deep drawing process of circular cup and square cup were used in forming experiments. Experimental and FEM analysis are performed to investigate drawability and affection of controlled blank holding force. Through the controlled blank holding force, drawability was improved. Limit drawing ratio is increased from 2.1 to 3.0 in circular cup drawing and change of thickness is decreased from 16.3 to 6.9%. This result is verified by FEM analysis. Through the observation of microstructure, the main cause is investigated as a quantity of the dynamic recrystallization.

The Drawbility Estimation in warm and Hot Forming of AB31B Magnesium Sheet (AZ31B 마그네슘판재의 온간, 열간 딮드로잉 성형성 평가)

  • Choo, D. K.;Oh, S. W.;Lee, J. H.;Kang, C. G.
    • Transactions of Materials Processing
    • /
    • v.14 no.7 s.79
    • /
    • pp.628-634
    • /
    • 2005
  • The drawability of AZ31B magnesium sheet is estimated at various temperatures (200, 250, 300, 350, $400^{\circ}C$), forming speeds (20, 50, 100mm/min), thicknesses (0.8, 1.4mm) and blank holding forces (2.0, 2.8, 3.4kN). The deep drawing process (DDP) of circular cup is used in forming experiments. The results of deep drawing experiments show that the drawability is well at the range from 250 to $300^{\circ}C$, 50mm/min forming speed and 2.0kN blank holding force. The 0.8mm magnesium sheets were deformed better than 1.4 mm. Blank holding force was controlled in order to improve drawability and prevent the change of cup thickness. When blank holding force was controlled, tearing and thickness change were decreased and limit drawing ratio was improved from 2.1 to 3.0.

Comparison of Warm Deep Drawability of Stainless Steel Sheet Between Crank Press and Hydraulic Press (크랭크 프레스와 유압 프레스에서 스테인리스 강판의 온간 드로잉성 비교)

  • Kim, Jong-Ho;Choi, Chi-Soo;Na, Kyoung-Hoan
    • Transactions of Materials Processing
    • /
    • v.4 no.4
    • /
    • pp.345-352
    • /
    • 1995
  • Warm deep drawing for optimum forming conditions to give the maximum drawing depth is investigated and compared with the results from experiments performed at room temperature. Experiments which draw square cups of STS 304 stainless steel sheet under the constant lubrication condition of teflon film are made both in a crank and hydraulic press for two kinds of specimens. The maximum drawing depth at warm forming condition reaches 1.4 times the drawing depth at room temperature in a crank press, whereas 1.6 times in a hydraulic press, and also more uniform distribution of thickness in case of warm deep drawn cup is observed. The effects of other factors on formability, such as forming temperature, speed of press and cooling of punch are examined and discussed.

  • PDF

The Simulations on the Formability of AZ31 Magnesium Alloy Sheet in Warm Deep Drawing (AZ31 마그네슘합금판의 온간 디프드로잉 성형성해석)

  • Kang, Dae-Min;Hwang, Jong-Kwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.1
    • /
    • pp.52-58
    • /
    • 2004
  • The material used is a commercial magnesium based alloy AZ31(Mg-3Al-1Zn)sheet with a thickness of 1.0mm. Uniaxial tension tests at warm temperature were carried out to investigate the material characteristics of K, m, and n. A warm drawing process with a local heating and cooling technique was developed to improve formability in this study with results of uniaxial tension tests because it is very difficult for Mg alloy to deform at room temperature by the conventional method. The die and blank holder were heated up, while the punch was water-cooled during deformation. FE simulations considering heat transfer were executed with Mg alloy to investigate the Improvement of deep drawability. For the assessment of improvement those were compare with the results of no considering heat transfer and room temperature.

  • PDF

Comparison of Warm Deep Drawability of Stainless Sheet Between Crank Press and Hydraulic Press (크랭크 프레스와 유압 프레스에서 스테인리스 강판의 온간 드로잉성 비교)

  • 김종호;최치수;나경환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.03a
    • /
    • pp.178-185
    • /
    • 1995
  • Warm deep drawing for optimum forming conditions to give the maximum drawing depth is investigated and compared with the results at room temperature. Experiments which draw square cups of STS 304 stainless steel sheet under the constant lubrication condition of teflon film made both in a crank and hydrqulic press for two kinds of specimens . The maximum drawing depth at warm forming condition reaches 1.4 times the drawing depth at room temperature in a crank press, whereas 1.6 times in a hydrqulic press, and also more uniform distribution of thickness in case of warm deep drawn cup is observed. The effects of other factors on formability , such as forming temperature, speed of press and cooling of punch are examinnied and discussed.

  • PDF

The Drawbility Estimation in Warm and Rot Sheet Forming Process of Magnesium for Substitution of Die-casting Process (다이캐스팅 공정의 대체를 위한 마그네슘판재의 온간, 열간 ???K드로잉 성형성 평가)

  • Choo D. K.;Oh S. W.;Lee J. H.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.407-410
    • /
    • 2005
  • The drawability of AZ31B magnesium sheet is estimated according to the variable temperatures (200, 250, 300, 350 and $400^{\circ}C$), forming speed (20, 50, 100 mm/min), thickness (0.8, 1.4 t), blank holding force (1.0, 1.4, 1.7kN). The deep drawing process (DDP) of circular cup is used in forming experiments. The results of deep drawing experiences show that the drawability is well at the range from 250 to $300^{\circ}C$, 50mm/min forming speed and 1.4kN blank holding force. The 0.8t magnesium sheets were deformed better than 1.4t. BHF was controlled in order to improve drawability and protect the change of cup thickness. When BHF was controlled, tearing and thickness change were decreased and LDR. was improved from 2.1 to 3.0.

  • PDF

A Study on the Warm Deep Drawability of Mg- Alloy Sheet Metal (마그네슘합금 판재의 온간 디프 드로잉성에 관한 연구)

  • 이용길;김종호;이종섭
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.117-120
    • /
    • 2003
  • Warm deep drawing which is one of the new forming technologies to improve formability of sheet metal is applied to the cylindrical cup drawing of Mg-alloy sheet metal. In experiments the temperature of die and blank holder is varied from room temperature to $300^{\circ}C$, while the punch is cooled by circulation of coolant to increase the fracture strength of workpiece on the punch corner area. Test material chosen for experiments is AZ31 magnesium sheet metal. Teflon film as a lubricant is used on both sides of a workpiece. The limit drawing ratio as well as thickness distributions of drawn cups are investigated and validity of warm deep drawing process is also discussed.

  • PDF

A Study on the Warm Deep Drawability of Sheets in Cr-Coated Die

  • Seo, Dae-Gyo;Lee, Jae-Dong;Heo, Young-Moo;Chang, Sung-Ho;Park, Yi-Chun;Kim, Heon-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.7
    • /
    • pp.839-846
    • /
    • 2001
  • Some deep drawing characteristics at elevated temperatures were investigated for the SCPI steel sheets by using a Cr-coated die. For this investigation, six different temperatures between room temperature and 250$\^{C}$, and six different drawing ratios ranging from 2.4 to 2.9 were considered. As a result, the limiting drawing ratio, the maximum drawing force and the maximum drawing depth were found to be affected sensitively by temperature, and more stable through-thickness strain distribution was observed at elevated temperatures. Some experimental results compared favorably with theoretical results obtained by using the finite element method.

  • PDF

Tool Temperatures to Maximize the Warm Deep-drawability of AZ31B Sheets (AZ31B 판재의 온간 디프드로잉 성형성 극대화를 위한 금형 온도)

  • Choi, S.C.;Kim, H.J.;Kim, H.Y.;Hong, S.M.;Shin, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.66-70
    • /
    • 2008
  • In this study, the formability of AZ31B magnesium alloy sheets was investigated by the analytical and experimental approaches. Tensile tests and limit dome height tests were rallied out at several temperatures between $25^{\circ}C$ and $300^{\circ}C$ to obtain the mechanical properties and forming limit diagram (FLD). The FLD-based criterion considering the strain-path and the blank temperature was used to predict the forming limit in a deep-drawing process of cross-shaped cup by finite element analysis. This criterion proved to be very useful in determining the optimal process conditions such as blank shape, punch velocity, minimum comer radius, fillet size, and so on, through the comparison between FEA and experimental data. In particular, the temperature of each tool that provided the best formability of the blank was determined by coupled temperature-deformation analyses. A practical method that can greatly reduce the forming time by increasing the punch speed during the forming process was suggested.

  • PDF